摘要
矩阵指数函数eAx的计算在线性系统理论及半群理论中有着特殊的作用,在现代控制理论中,无论是齐次方程还是非齐次方程的求解,主要取决于矩阵指数函数eAx的计算和近似。文章利用代数知识给出了矩阵指数函数eAx的连分式逼近函数的一个重要性质和定理,并在此基础上对矩阵指数函数eAx的连分式算法进行改进,最后用数值例子来验证其可行性。
Calculating the functions of the matrix exponential e^Ax has special significance in the theory of linear systems and the theory of semi-groups. Especially, in the modern control theory, no matter the equation is homogeneous or non-homogeneous, the result depends on the calculation of the matrix exponential e^Ax. In this paper, an important property and a theorem have been given about the matrix Thiele's continued fraction which is used to approximate the function of e^Ax. Based on the property, the Thiele algorithm is improved. A numeral example is also provided.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第10期1323-1326,共4页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(10171026
60473114)
安徽省自然科学基金资助项目(03046102)
关键词
Samelson逆
倒导数
矩阵连分式
Thiele连分式逼近
Samelson inverse
reciprocal derivative
matrix continued fraction
Thiele's continued fraction approximation