摘要
R是有限链环,M是其极大理想,K=R/M;则建立了K[x]中一类多项式在R[x]中的Hensel提升;证明了多项式的Hensel提升不依赖于n的选择,证明了K[x]中任一首一多项式f(x)在R[x]中具有Hensel提升的充要条件是f(0)≠0且f(x)在其分裂域中无重根。
Let R be a finite chain ring with the unique maximal ideal M. K denotes the residue field R/ M. The Hensel lifts in R[x] of certain polynomials in K[x] are given. It is proved that the Hensel lift is independent of the particular choice of n and that, for an arbitrary monic polynomial f(x) in K[x] , the Hensel lift in R[x] of f(x) exists if and only if f(0) ≠0 and f(x) has no multiple roots in its splitting field.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第10期1338-1340,共3页
Journal of Hefei University of Technology:Natural Science
基金
安徽省高校青年教师科研计划重点资助项目(2006jq1002zd)
安徽省教育厅自然科学基金资助项目(2006kj254b)
合肥工业大学科学研究发展基金资助项目(061003F)