期刊文献+

Minkowski空间中定向曲面上的第二类松弛弹性线

Relaxed Elastic Lines of Second Kind on an Oriented Surface in Minkowski Space
下载PDF
导出
摘要 在Minkowski空间中,定义了定向曲面上的第二类松弛弹性线,推导了在定向曲面上的第二类松弛弹性线的Euler_Lagrange方程.进一步阐明了,这些曲线是否落在曲率线上,最后给出相关的实例. The relaxed elastic line of second kind on an oriented surface in the Minkowski space was defined and for the relaxed elastic line of second kind which was lying on an oriented surface the Euler-Lagrange equations were derived. Furthermore, whether these curve lie on a curvature line or not is investigated and some applications are given.
出处 《应用数学和力学》 EI CSCD 北大核心 2006年第11期1297-1304,共8页 Applied Mathematics and Mechanics
关键词 弹性线 测地线 MINKOWSKI空间 EULER-LAGRANGE方程 elastic line geodesic Minkowski space Euler-Lagrange equation
  • 相关文献

参考文献11

  • 1Landau L D, Lifshitz E M. Theory of Elasticity [ M]. Oxford:Pergamon Press, 1979,84.
  • 2Manning G S. Relaxed elastic line on a curved surfaces[ J]. Quarterly of Applied Mathematics, 1987,XLV(3 ) : 515-527.
  • 3Nickerson H K,Manning G S. Intrinsic equations for an relaxed elastic line on a oriented surface[ J].Geometriae Dedicata, 1988,27:127-136.
  • 4Weinstock R. Calculus an Variations[ M]. New York:Dover, 1974, 16-48.
  • 5Unan Z, Yilmaz M. Elastic lines of second kind on an oriented surface[ J]. Ondokuz Mayis Univ Fen Dergisi, 1997,8( 1 ) : 1-10.
  • 6Hilbert D, Cohn-Vossen S. Geometry and the Imagination [ M]. New York: Chelsea, 1952, 172-248.
  • 7Weinstein T. An Introduction to Lorentz Surfaces[ M]. New York: Walter de Gmyter, 1956, 149-151.
  • 8Ekici C. Yan-Oklidyen Uzaylarda Genellestirilmis Yah-Regle Yüzeyler [ D ]. Ph D Dissertation. Osmangazi Universitesi, 1998,95-96. (in Turkish) '
  • 9Tutar A. IL^3 Lorentz Uzaymda Küiresel egriler ve Joachimsthal Teoremi[D]. Ph D Dissertation, Ondokuz Mayls (Jniversitesi, 1994,36-37. (in Turkish)
  • 10O'Neill B. Elemantary Differential Geometry[ M] .New York:Academic Press, 1956, 196-214.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部