期刊文献+

无界域上部分耗散系统解的全局存在性和唯一性(英文) 被引量:1

The existence and uniqueness of the solutions for partly dissipative reaction diffusion systems in R^n
下载PDF
导出
摘要 为了包含常数解以及行波解等特殊形式的解,用加权空间作为相空间。考虑了带有任意阶多项式增长指数非线性项的部分耗散系统,证明了系统所对应的解在L_〈r〉~2(R^n)×L_〈r〉~2(R^n)(r>n/2)中的全局存在性以及唯一性. This paper proves the existence and uniqueness of the solutions for the partly dissipative reaction diffusion system with some weak derivatives and with a polynomial growth nonlinearity of arbitrary order in inhomogeneous term. The solutions are obtained in the weighted space L^2(γ)(R^n) × L^2(γ)(R^n), which allows functions to grow at infinity.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期130-136,共7页 Journal of Lanzhou University(Natural Sciences)
基金 Supported by the National Natural Science Foundation of China(10471056)and Trans-Century Training Programme Foundation for the Talents by the Ministry of Education
关键词 部分耗散系统 加权空间 任意阶多项式增长指数非线性性 partly dissipative reaction diffusion system weighted space polynomial growth nonlinearity of arbitrary order
  • 相关文献

参考文献10

  • 1HENRY D.Geometric theory of semilinear parabolic problems[C]//Lecture Notes in Math.Berlin:Springerverlag,1981:840.
  • 2MARION M.Finite dimensional attractors associated with partial dissipative reaction diffusion systems[J].SIAM J Math Anal,1989,20(4):816-844.
  • 3SELL G R,YOU Y.Dynamics of Evolutionary Equations[M].New York:Springer-Verlag,2002.
  • 4BELL J.Some threshold results for models of myelinated nerves[J].Math Biosci,1981,54(3-4):181-190.
  • 5FITZHUGH R.Impluses and physiological states in theoretical models of nerve membrane[J].Biophs J,1961,1(6):445-466.
  • 6CARVALHO A N,DLOKTO T.Partially dissipative systems in locally uniform spaces[J].Colloq Math,2004,100(2):221-242.
  • 7BABIN A V,VISHIK M I.Attractors of partial differential evolution equations in an unbounded domain[J].Proceeding Royal Society Edinburgh,1990,116A(3-4):221-243.
  • 8EFENDIEVA M A,ZELIK S V.The attractor for a nonlinear reaction diffusion system in an unbounded domain[J].Comm Pure Appl Math,2001,54(6):625-688.
  • 9ARRIETA J M,CHOLEWA J W,DLOTKO T,et al.Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains[J].Nonlinear Analysis,2004,56(4):515-554.
  • 10ROBINSON J C.Infinite Dimensional Dynamical Systems an Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors[M].Cambridge:Cambridge University Press,2001.

同被引文献16

  • 1G. Prato,J. Zabczyk.Convergence to equilibrium for classical and quantum spin systems[J]. Probability Theory and Related Fields . 1995 (4)
  • 2Kifer Y.Random Perturbations of Dynamical Systems. . 1988
  • 3Baladi V.Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dy-namics . 2000
  • 4Viana M.Stochastic Dynamics of Deterministic Systems. . 1997
  • 5Martine M.Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems. SIAM Journal on Mathematical Analysis . 1989
  • 6Rodriguez-Bernal A,,Wang B.Attractor for partly dissipative reaction diffusion systems in Rn. Journal of Mathematical Analysis and Applications . 2000
  • 7Magalha~es P,Coayla-Tern E.Weak solution for stochastic FitzHugh-Nagumo equations. Stochastic Analysis and Applications . 2003
  • 8Huang J,Shen W.Global attractors for partly dissipative random/stochastic reaction diffusion systems. International Journal of Evolution Equations . 2009
  • 9Da Prato G,Zabczyk J.Ergodicity for Infinite Dimensional Systems. . 1996
  • 10Peszat S,Zabczyk J.Stochastic Partial Differential Equations With Lévy Noise. . 2007

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部