摘要
为了包含常数解以及行波解等特殊形式的解,用加权空间作为相空间。考虑了带有任意阶多项式增长指数非线性项的部分耗散系统,证明了系统所对应的解在L_〈r〉~2(R^n)×L_〈r〉~2(R^n)(r>n/2)中的全局存在性以及唯一性.
This paper proves the existence and uniqueness of the solutions for the partly dissipative reaction diffusion system with some weak derivatives and with a polynomial growth nonlinearity of arbitrary order in inhomogeneous term. The solutions are obtained in the weighted space L^2(γ)(R^n) × L^2(γ)(R^n), which allows functions to grow at infinity.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第5期130-136,共7页
Journal of Lanzhou University(Natural Sciences)
基金
Supported by the National Natural Science Foundation of China(10471056)and Trans-Century Training Programme Foundation for the Talents by the Ministry of Education
关键词
部分耗散系统
加权空间
任意阶多项式增长指数非线性性
partly dissipative reaction diffusion system
weighted space
polynomial growth nonlinearity of arbitrary order