期刊文献+

丛枝菌根-植物修复重金属污染土壤研究中的热点 被引量:9

Hotspots in arbuscular mycorrhiza-assisted phytoremediation of heavy metal-contaminated soils
下载PDF
导出
摘要 随着菌根研究和植物修复技术的发展,利用丛枝菌根强化重金属污染土壤的植物修复逐渐受到人们的重视。本文系统综述了当前的几个研究热点:(1)菌根植物吸收和转运重金属的分子机制;(2)AM真菌对超富集植物重金属吸收的影响及其机制;(3)AM真菌对转基因植物重金属吸收的影响及其机制;(4)AM真菌与其他土壤生物在植物修复中的复合作用;(5)丛枝菌根与化学螯合剂在植物修复中的复合作用;(6)重金属复合污染土壤的丛枝菌根-植物修复;(7)放射性污染土壤的枝菌根-植物修复;(8)丛枝菌根-植物修复的田间试验研究。在未来的丛枝菌根-植物修复研究中,要筛选优良的宿主植物和与之高效共生的AM真菌,加强相关理论和应用基础研究,并构建高效基因工程菌。 With the development of mycorrhiza and phytoremediation techniques, the application of arbuscular mycorrhiza (AM) to enhance phytoremediation efficiency has attracted more and more attention. The present hotspots in AM-assisted phytoremediation of heavy metal-contaminated soils include that, (l) the molecular mechanisms that AM fungi regulate heavy metal uptake and translocation; (2) the effect and mechanism of AM fungi on heavy metal uptake of hyperaccumulators; (3) the effect and mechanism of AM fungi on heavy metal uptake of transgenic plants; (4) the combination of AM fungi and other beneficial microorganisms; (5) the combination of AM fungi and chelators; (6) AM-assisted phytoremediation of polymetallic soils; (7) AM-assisted phytoremediation of radio-contaminated soils; and (8) demonstration of AM-assisted phytoremediation in field. In the future AM-assisted phytoremediation, preferable host plants and the effective associations and the relative theoretical and applied study need to be strengthened, and effective genetically-engineered AM fungi need to be constructed.
出处 《生态环境》 CSCD 北大核心 2006年第5期1086-1090,共5页 Ecology and Environmnet
基金 国家863项目(2001AA640501) 河南科技大学人才引进专项基金项目(09001106) 河南科技大学科学研究基金项目(2006ZY035)
关键词 丛枝菌根 植物提取 植物稳定 重金属污染 土壤 arbuscular mycorrhizae phytoextraction phytostabilization heavy metal contamination soil
  • 相关文献

参考文献52

  • 1BRADLEY R,BURT A J,READ D J.Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris[J].Nature,1981,292:335-337.
  • 2LEYVAL C,TURNAU K,HASELWANDTER K.Effect of heavy metal pollution on mycorrhizal colonization and function:physiological,ecological and applied aspects[J].Mycorrhiza,1997,7:139-153.
  • 3KHAN A G,KUEK C,CHAUDHRY T M,et al.Role of plants,mycorrhizae and phytochelators in heavy metal contaminated land remediation[J].Chemosphere,2000,41:197-207.
  • 4GAUR A,ADHOLEYA A.Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils[J].Current Science,2004,86:528-534.
  • 5RIVERA-BECERRIL F,VAN TUINEN D,MARTIN-LAURENT F,et al.Molecular changes in Pisum sativum L.roots during arbuscular mycorrhiza buffering of cadmium stress[J].Mycorrhiza,2005,16(1):51-60.
  • 6OUZIAD F,HILDEBRANDT U,SCHMELZER E,et al.Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress[J].Journal of Plant Physiology,2005,162:634-649.
  • 7REPETTO O,BESTEL-CORRE G,DUMAS-GAUDOT E,et al.Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots[J].New Phytologist,2003,157:555-567.
  • 8BURLEIGH S H,KRISTENSEN B K,BECHMANN I E.A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization,yet down-regulated by arbuscular mycorrhizal colonization[J].Plant Molecular Biology,2003,52:1077-1088.
  • 9GONZALEZ-GUERRERO M,AZCON-AGUILAR C,MOONEY M,et al.Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family[J].Fungal Genetics and Biology,2005,42(2):130-140.
  • 10COLES K E,DAVID J C,FISHER P J,et al.Solubilisation of zinc compounds by fungi associated with the hyperaccumulator Thlaspi caerulescens[J].Botanical Journal of Scotland,2001,51(2):237-247.

二级参考文献55

  • 1李晓林,曹一平.VA菌根吸收矿质养分的机制[J].土壤,1993,25(5):274-277. 被引量:28
  • 2史瑞和.土壤农化分析[M].北京:农业出版社,1996.167-168.
  • 3Stockdill S M J, Cossens G G. Earthworms, a must for maximum production. New Zealand Journal of Agriculture,1969,119: 61~67.
  • 4Edwards C A, Lofty J R. Biology of Earthworms. Chapman & Hall, London. Edwards CA & Lofty JR, 1973- Pesticides and earthworms. Report of Rothamated Experimentel Station for 1972, Part 1972. 1, 212.
  • 5Edwards C A, Lofty J R. The influence of arthropods and earthworms upon root growth of direct drilled cereals. Journal of Applied Ecology, 1978, 15: 789~795.
  • 6Langdon C J, Piearce T G, Meharg A A, et al. Survival and behaviour of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from arsenate-contaminated and non-contaminated sites. Soil Biol. Biochem., 2001, 33:1239~1244.
  • 7Devliegher W, Verstraete W. Lumbricus terrestris in a soil core experiment: effect of nutrient enrichment processes (NEP) and gut-associated processes (GAP) on the availability of plant nutrients and heavy metals. Soil Biol. Biochem., 1996, 28:489~496.
  • 8Ma Y, Dickinson N M, Wong M H. Toxicity of Pb/Zn mine tailings to the earthworm Pheretima and the effects of burrowing on metal availability. Biol. Tertil. Soils, 2002, 36:79~86.
  • 9Cheng J M, Wong M H. Effects of earthworms on Zn fractionation in soils. Biol. Fertil. Soils, 2002, 36: 72~78.
  • 10Smith S E, Read D J. Mycorrhizal Symbiosis. London: Second Academic Press, 1997. 127~160.

共引文献57

同被引文献237

引证文献9

二级引证文献261

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部