期刊文献+

用连续Hopfield网络实现无限时域上的最优控制

Infinite horizon optimal control using continuous Hopfield neural networks
下载PDF
导出
摘要 为避免直接采用Riccati方程求解时变系统无限域最优控制问题时的计算困难,本文提出一种基于时间连续状态连续型Hopfield网络(CTCSHNN)实现无限域动态最优控制的方法.该方法通过建立CTCSHNN能量函数与移动域控制指标间的等价关系,可在线构建CTCSHNN.理论分析表明,依据该方法设计的CTCSHNN具有稳定性,而且移动域控制量可由网络稳态输出直接产生.将该方法与滚动优化策略相结合,可实现无限时域上的闭环最优控制.仿真实验验证了理论设计的正确性与采用基于CTCSHNN的移动域控制实现无限域闭环最优控制的可行性. To avoid the computational difficulty in solving infinite horizon optimal control problem with Riccati equation for time-varying systems, an infinite horizon dynamic optimal control method is developed using continuous time continuous state Hopfield neural networks (CTCSHNN). The CTCSHNN can be constructed online by establishing the equivalent relation between the energy function of CTCSHNN and the performance index of receding horizon control. Theoretical analysis is then given to show that the designed CTCSHNN has stability, and the receding horizon control can be produced directly from CTCSHNN's stable outputs. Moreover, the closed loop optimal control in infinite horizon can also be implemented by integrating the method with rolling optimization strategy. Finally, simulation experiment shows that the proposed theoretical design is effective, and the closed-loop optimal control in infinite-horizon is feasible by using receding horizon control based on CTCSHNN.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第4期640-644,648,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(60375017) 国家自然科学基金与宝钢集团联合资助项目(50274003) 教育部科学技术研究重点资助项目(203002) 北京市教委资助项目(KM200510005026)
关键词 多变量时变系统 HOPFIELD网络 移动域控制 动态最优控制 无限域 multivariable time-varying systems Hopfield neural network receding horizon control dynamic optimal control infinite horizon
  • 相关文献

参考文献15

  • 1HOPFIELD J J.Neural networks and physical systems with emergent collective computational abilities[J].Proceedings of National Academy of Sciences of USA,1982,79(8):2554-2558.
  • 2HOPFIELD J J.Neurons with graded response have collective computational properties like those of two-state neurons[J].Proceedings of National Academy of Sciences of USA,1984,81(10):3088-3092.
  • 3KOIRAN P,WESTERVELT R M.Dynamics of discrete time,continuous state Hopfield networks[J].Neural Computation,1994,6(4):459-468.
  • 4WANG L.On the dynamics of discrete-time,continuous-state Hopfield neural networks[J].IEEE Trans on Circuits and Systems,1998,45(6):747-749.
  • 5王万良,吴启迪,徐新黎.基于Hopfield神经网络的作业车间生产调度方法[J].自动化学报,2002,28(5):838-844. 被引量:26
  • 6高炜欣,罗先觉.基于Hopfield神经网络的多阶段配电变电站的规划优化[J].电工技术学报,2005,20(5):58-64. 被引量:15
  • 7LAN Ming-Shong,CHAND S.Solving Linear Quadratic discreteTime Optimal Controls Using Neural Networks[C]//Proc of the 29th Confon Decision and Control.New York:IEEE Press,1990:2770-2772.
  • 8MEARS M J,SMITH R,CHANDLER P R,et al.Hopfield neural network for adaptive control[C]//AIAA Guidance,Navigation,and Control Conference.Monterey:AIAA Press,1993:1349-1370.
  • 9CHANDLER P,MEARS M,PACHER M.On-line Optimizing Networks for Reconfigurable Control[C]//Proc of the 32nd Conf on Decision and Control.New York:IEEE Press,1993:2272-2277.
  • 10STECK J K and BALKRISHNAN S N.Use of Hopfield Neural Net works in Optimal Guidance[J].IEEE Trans on Aerospace and Electronic Systems,1994,30(1):287-293.

二级参考文献25

  • 1张长水,阎平凡.解Job-shop调度问题的神经网络方法[J].自动化学报,1995,21(6):706-712. 被引量:38
  • 2Xia Yousheng,Proc 1999 Conf Decision Control,1999年,609页
  • 3Xia Youshen,IEEE Trans Neural Networks,1998年,9卷,6期,1331页
  • 4Chen Zengqiang,控制理论与应用,1998年,15卷,6期,847页
  • 5席裕庚,预测控制,1993年
  • 6Cai Xuansan,最优化与最优控制,1982年,165页
  • 7Stoll H G. Least-cost Electric Utility Planning. John Wiley, 1989.
  • 8Enver Masud. An interactive procedure for sizing and timing distribution substations using optimaztion techniques. IEEE Transactions on Power Apparatus and Systems, 1974, 93 (5):1281-1286.
  • 9Crawford Dale M, Jr Stewart B Hort. A mathematical optimization technique for locating and sizing distribution substations, and deriving their optimal service areas. IEEE Transactions on Power Apparatus and Systems, 1975, 94 (2): 230-234.
  • 10Thompson G L, Wall D L. A branch and bound model for choosing optimal substation locations. IEEE Transactions on Power Apparatus and Systems, 1981,100 (5) : 2683-2687.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部