期刊文献+

BP算法和对称ARCH类模型对股市波动性预测的实证比较 被引量:6

Comparison:the volatility forecasting of BP algorithm and symmetric ARCH model to stock market
下载PDF
导出
摘要 利用我国深圳股票市场的实际数据,建立了相应的BP算法网络预测模型和ARCH(1),GARCH(1,1)预测模型,分别用来对深成指数每个周末收盘价的波动性进行预测.研究表明,BP算法对样本外观测值的上凸曲线拟合得较好,对下凸曲线的拟合效果较差;ARCH(1)和GARCH(1,1)则反之,其预测曲线对样本外观测值的下凸曲线拟合效果都较好,但对上凸曲线的拟合效果都较差.通过采用6种常用的预测误差统计量:平均误差、平均绝对误差、均方根误差、平均绝对比率误差、Akaike信息准则、Baves信息准则对样本外数据的预测结果进行检验,BP算法的预测效果最好,ARCH(1)模型次之,GARcH(1,1)模型偏差. Three forecasting models, called BP algorithm, ARCH(1) and GARCH(1,1), are established based on the actual data of Shenzhen stock market, China. The proposed three models are respectively used to predict the volatility of the weekly closing price of the composition indexes in Shenzhen Stock Exchange. Furthermore, six common statistical methods of the forecasting error, i.e., mean error (ME), mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), Akaike's information criterion (AIC) and Bayesian information criterion (BIC) are used to test the forecasting results of the out-of-sample data. The results show that the forecasting result of BP algorithm is the best, the ARCH(1) model takes the second place and the GARCH(1,1) model is the worst.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第4期658-662,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(60574069) 广东省自然科学基金资助项目(31906) 广东省科技厅攻关项目(2004B10101033) 广州市科技局攻关项目(2004Z3-D0231) 广东省软科学研究项目(2005B70101044)
关键词 BP算法 ARCH(1)模型 GARCH(1 1)模型 波动性 BP algorithm ARCH(1) model GARCH(1,1) model volatility
  • 相关文献

参考文献8

  • 1Engle R F.Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation[J].Economitrica,1982,50:987-1008.
  • 2Bollerslev T.Generalized autoregressive conditional heteroskedasticity[J].J of Economitrics,1986,31:307-327.
  • 3Akgiray V.Conditional heteroskedasticity in time series of stock returns:Evidence and forecasts[J].J of Business,1989,62:55-80.
  • 4Bernd F,Klaus R.Volatility estimation with neural network[C] //Proc of IEEE/IAFE Conf on Computational Intelligence for Financial Engineering,1996.New York,USA:[s.n.],1996:177-181.
  • 5Donaldson,Kamstra.Neural network forecast combining with interaction effects[J].J of Franklin Institute,1999,336:227-236.
  • 6QI Min,ZHANG Guoqiang.An investigation of model selection criteria for neural network time series forecasting[J].European J of Operational Research,2001,132:666-680.
  • 7刘新勇,贺江峰,孟祥泽,陈增强,袁著祉.基于神经网络的股市预测[J].南开大学学报(自然科学版),1998,31(3):39-44. 被引量:11
  • 8PANG Sulin.An application of logistic model in stock forecasting[C]//Proc of the Eighth Int Conf on Control Automation,Robotics and Vision.[s.1.]:[s.n.],2004:1491-1496.

二级参考文献3

共引文献10

同被引文献55

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部