期刊文献+

受位置约束的有色装箱问题 被引量:2

On constrained coloring bin packing problem with longest item at bottom
下载PDF
导出
摘要 作为对有色装箱问题的推广,提出了一种受位置约束的有色装箱问题(longest item at the bottom coloring bin packingproblem,LIBCBPP),即在有色物品的装箱过程中,要求重(长)的物品置于轻(短)的物品下方。该问题在任务调度和日常生活中的运输等问题中有着广泛的应用背景。给出了一个求解该问题的近似KC-LIBFF算法,分析其最坏情况渐进性能比为2,并给出了相应的实验结果。 As the extension of coloring bin packing problem (BPP), a constrained coloring bin packing problem with longest item at the bottom (LIBCBPP) is proposed, in which an additional longest item at the bottom is needed if different color items are put into a same bin. The problem has many applications such as multiprocessor scheduling and real-world transportation. An approximation algorithm KC-LIBFF is presented to solve the LIBCBPP problem. It is proved that the KC-LIBFF algorithm has an asymptotic worst-case performance ratio of 2, finally the experimental results are given.
作者 杨鼎强 王晨
出处 《计算机工程与设计》 CSCD 北大核心 2006年第20期3864-3866,共3页 Computer Engineering and Design
关键词 装箱问题 调度问题 组合优化 近似算法 最坏情况渐进性能比 bin-packing problem scheduling combinational optimization approximation algorithm worst-case performance ratio
  • 相关文献

参考文献8

  • 1Liu C L,Layland J.Scheduling algorithms for multiprogramming in a hard real-time environment[J].Journal ACM,1973,10(1):174-189.
  • 2Hall L A.Approximation algorithms for scheduling[M].Boston:Approximation for NP-hard problems,PWS Publishing,1996.1-45.
  • 3Khemka A,Shyamasundar R K.An optimal multiprocessor realtime scheduling algorithm[J].Journal of Parallel and Distributed Computing,1997,43(1):37-45.
  • 4Garey M R,Johnson D S.Computers and intractability:A guide to the theory of NP-completeness freeman[M].San Francisco:CA,1979.
  • 5Johnson D S,Demers A,Ullman J D,et al.Worst-case performance bounds for simple one-dimensional packing algorithms[J].SIAM Journal of Computing,1974,3(4):299-325.
  • 6Johnson D S.Fast algorithms for bin packing[J].Journal Computer Systems Science,1974,(3):272-314.
  • 7顾晓东,许胤龙,陈国良,顾钧.有色装箱问题的在线近似算法[J].计算机研究与发展,2002,39(3):335-341. 被引量:10
  • 8Falkmauer E.Ahybird grouping genetic algorithm for bin packing[J].Journal of Heuristics,1996,2(1):5-30.

二级参考文献12

  • 1[1]C L Liu, J Layland. Scheduling algorithms for multi programming in a hard real-time environment. Journal of ACM, 1973, 10(1): 174~189
  • 2[2]A Khemka, R K Shyamasundar. An optimal multiprocessor real-time scheduling algorithm. Journal of Parallel and Distributed Computing, 1997, 43(1): 37~45
  • 3[3]Y Oh. The design and analysis of scheduling algorithms for real-time and fault-tolerant computer systems[Ph D dissertation]. Department of Computer Science, University of Virginia, Vinginia, 1994
  • 4[4]M R Garey, D S Johnson. Computers and Intractability: A Guild to the Theory of NP-Completeness. New York: W H Freeman and Company, 1978
  • 5[5]E G Coffman, M R Garey, D S Johnson. Approximation Algorithms for BinPacking: A Survey. In: D Hochbaum ed. Approximation Algorithms for NP-Hard Problems. Boston: PWS Publishing, 1996. 46~93
  • 6[6]A van Vliet. Lower and upper bounds for on-line bin packing and scheduling heuristic[Ph D dissertation]. Erasmus University, Rotterdam, Netherlands, 1995
  • 7[7]A van Vliet. On the asymptotic worst-case behavior of harmonic fit. Journal of Algorithms, 1996, 20(1): 113~136
  • 8[8]E G Coffman, K So, M Hofri et al. A stochastic model of bin-packing. Inf and Cont, 1980, 44(2): 105~115
  • 9[9]E G Coffman, C Courcoubetis, M R Garey et al. Fundamental discrepancies between average-case analysis under discrete and continuous distributions. In: Proc of the 23rd Annual ACM Symp on Theory of Computing. New York: ACM Press, 1991. 230~240
  • 10[10]D S Johnson. Near optimal bin packing algorithms[Ph D dissertation]. MIT, Massachusetts, 1973

共引文献9

同被引文献18

  • 1Kreuzinger J, Schulz A, Pfeffer M, et al. Real-time scheduling on multithreaded processors[C]. Washington, DC: Proceedings on the 7th Intl Conf on Real-Time Systems and Applications, 2000.
  • 2William L, George K, Vipin K. Multi-capacity bin packing algorithms with applications to job scheduling under multiple constraints[C].Aizu-Wakamatsu, Fukushima: International Conference on Parallel Processing, 1999:404-412.
  • 3Jansen K, Solisoba R. An asymptotic fully polynomial time approximation scheme for bin covering[J]. Theoretical Computer Science, 2003,306:543-551.
  • 4Janos C, David S J, Claire K. Better approximation for bin covering[C]. Philadelphia, PA: Proceedings on the Twelfth Symposium on Discrete Algorithms, 2001:557-566.
  • 5Krumke S O, Paepe W E, Stougie J, et al. Online Bincoloring[C]. Denmark: Proceedings of the 9th Annual European Symposium on Algorithms, 2001:74-84.
  • 6Hall L A. Approximation algorithms for scheduling [M]. Hochbaum D. Approximation for NP-Hard Problems. Boston: PWS Publishing, 1996:1-45.
  • 7Liu C L, James W. Scheduling Algorithms for multiprogramming in a hard-real-time environment[J]. Journal of the Association for Computing Machinery, 1973,20 : 46-61.
  • 8Cho H, Ravindran B, Jensen E D. An Optimal Real-Time Scheduling Algorithm for Multiprocessors [C]. 27th IEEE International Real-Time Systems Symposium, 2006 : 101-110.
  • 9Kashyap S R,Khuller S. Algorithms for non-uniform size data placement on parallel disks[J]. Algorithms, 2006,60 : 144-167.
  • 10Xavier E C,Miyazawa F K. The class constrained bin packing problem with applications to video on demand[J]. Theoretical Computer Science, 2008,393 : 240-259.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部