期刊文献+

多用户网络量子密码术的改进 被引量:1

Improved quantum secret sharing in multi-user quantum communication network
下载PDF
导出
摘要 针对经典的利用EPR粒子纠缠态互换的量子密钥传输协议存在的问题,它提出了一个在多用户传输网络中,基于3个粒子的最大纠缠态GHZ安全的量子密钥传输协议。改进的量子密钥传输协议在通信节点与控制中心之间通过多个GHZ对完成该密码的安全分配系统。与经典的利用EPR粒子纠缠态互换的量子密钥传输协议相比,在传输网络中,窃听者Eve如果参与了3方的通信,要获得有用信息,必然要不断的引入错误,于是该网络的节点和控制中心将会发现Eve,保证了改进的多用户网络安全性。 According to the shortcoming of the classical quantum cryptography with ERP states, how this quantum-secret-sharing scheme is implemented within realistic, highly secure multi-user communication network is presented, usinggreenberger-horne-zeilinger (GHZ) states. The quantum communication network marries a variety of GHZ states to well established intemet technology in order to build a secure key distribution system employed in conjunction with the nodes and control centers. In communication network, eavesdropper Eve transmit with three party, useful information is gain, the errors is introduced. The nodes and control centers can fred Eve, the security of multi-user quantum network is ensured,
出处 《计算机工程与设计》 CSCD 北大核心 2006年第20期3913-3915,共3页 Computer Engineering and Design
关键词 量子网络 量子密码术 GHZ 量子身份认证 密钥共享 隐形传态 量子纠缠交换 quantum communication network quantum cryptograph GHZ quantum identity authentication quantum secret sharing teleportation quantum entanglement swapping
  • 相关文献

参考文献15

  • 1Barnum C,Gottesman D,SMITH A,et al.Authentication of quantum messages[C].Vancouver,Canada:Proc 43rd Annual IEEE Symposium on the Foundations of Computer Science (FOCS'02),2002.449-458.
  • 2Vaid L,Yoran N.Methods for reliable teleportation[J].Phys Rev A,1999,59(1):116-125.
  • 3赵生妹,李飞,郑宝玉.具有可证明安全性的量子加密算法[J].通信学报,2003,24(10):31-38. 被引量:5
  • 4Yan F L,Gao T.Quantum secret sharing between multiparty and multiparty without entanglement[J].Phys Rev A,2005,72(1):012304.
  • 5Charles H B,Brassard G.Quantum cryptography,public key distribution and coin tossing[C].Proceedings of 1984 IEEE International Conference on Computers,Systems and Signal Processing,1984.175-179
  • 6Ekert A K.Quantum cryptography based on Bell's theorem[J].Phys Rev Lett,1991,67(6):661-663.
  • 7Bendnet C H.Quantum cryptography using any two nonorthogonal states[J].Phys Rev Lett,1992,68(21):3121-3124.
  • 8Townsend P D.Quantum cryptography on multi-user optical fibre networks[J].Nature,1997,385(6611):47-49.
  • 9舒远,谈正.多用户网络环境下量子密码术[J].通信学报,2003,24(12):164-169. 被引量:3
  • 10Hillery M,Buzek V,Berthiaume A.Quantum secret sharing[J].Phys Rev A,1999,59(3):1829-1834.

二级参考文献32

  • 1[1]WEINFURTER H, GORMAN P M, TAPSTER P R, et al.Quantum cryptography: a step towards global key distribution [J].Nature, 2002 ,419(6906): 450.
  • 2[2]SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[A]. Proc 35nd Annual Symposium on Foundations of Computer Science[C]. Shafi Goldwasser, IEEE Computer Society Press,1994. 124-134.
  • 3[3]CHARLES H B, BRASSARD G. Quantum cryptography: Public key distribution and coin tossing[A]. Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing[C]. 1984. 175-179.
  • 4[4]BENNETT C H, BESSETTE F, BRASSARD G, et al. Experimental quantum cryptography[J]. Journal of Cryptology, 1992,5(1): 3-28.
  • 5[5]EKERT A K.Quantum cryptography based on Bell's theorem[J]. Physical Review Letters,1991, 67: 661-663.
  • 6[6]RICHARD J H.Quantum key distribution over a 48km optical fiber network[J]. Journal of Modern Opticals, 2000, 47(2): 533-547.
  • 7[7]BENNETT C H, BRASSARD G, CREPEAL C, et al. Teleporting an unknow quantum state via dual classic and Einstein-Podolsky- Rosen channels[J]. Phys Rev Lett, 1993, 70: 1895-1899.
  • 8[8]BRASSARD G, LNTKENHANS N, MOR T, et al.Limitation on practical quantum cryptography[J]. Phy Rev Lett, 2000, 85:1330-1333.
  • 9NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information[M]. Cambridge: Cambridge University Press,2000.
  • 10GISIN N,RIBORDY G. TITTEL W. et al. Ouantum cryptography[EB/OL], http://xxx.lanl.gov/quant-ph/0101098,2001-01-19.

共引文献12

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部