期刊文献+

无搅拌的chemostat竞争模型正平衡解的存在性

Existence of positive steady-state solutions for the competition model in the unstirred chemostat
下载PDF
导出
摘要 目的讨论无搅拌的chemostat竞争模型正平衡解的存在性。方法上下解方法,特征值理论,极值原理,计算锥映像不动点指数。结果得到了该系统正平衡解存在的条件。结论两竞争物种的最大出生率适当大时正平衡解存在。 Aim To discuss the existence of positive steady-state solutions for the competition model in an unstirred chemostat. Methods Using lower-upper solution method, principal eigenvalue theory, the maximum principle and the index of fixed point of compact map in cone. Results Some conditions of existence of positive steady-state solutions to the system are obtained. Conclusion Positive steady-state solutions exist when the maximal birth-rates of the two competing populations are large enough.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期705-708,共4页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10571115)
关键词 CHEMOSTAT 不动点指数 平衡态 chemostat index of fixed point steady-state
  • 引文网络
  • 相关文献

参考文献7

  • 1SO J W,WALTMAN P.A nonlinear boundary value problem arising from competition in the chemostat[J].Appl Math Comp,1989,32:169-183.
  • 2HSU S B,WALTMAN P.On a system of reaction-diffusion equations arising from competition in an unstirred chemostat[J].SIAM J Appl Math,1993,53 (4):1 026-1 044.
  • 3WU Jian-hua.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Anal,2000,39(7):817-835.
  • 4王艳娥,李艳玲.一类捕食与被捕食系统正平衡解的存在性[J].西北大学学报(自然科学版),2005,35(6):680-682. 被引量:2
  • 5FIGUEIREDO D G,GOSSEZ J P.Strict monotonicity of eigenvalues and unique continuation[J].Commun Part Diff Eq,1992,17:339-346.
  • 6SCHAEFER H H.Topological Vector Spaces[M].New York:Macmillan,1996.
  • 7ZHENG Si-ning,LIU Jing.Coexistence solutions for a reaction-diffusion system of unstirred chemostat model[J].Appl Math Comput,2003,145(2/3):579-590.

二级参考文献7

  • 1BLAT J, BROWN K J. Bifurcation of steady-state solutions in predator-prey and competition systems [J]. Proc Roy Soc Edinburgh Sect A, 1984, 97:21-34.
  • 2DANCER E N, Lopez-Gomez J, ORTEGA R. On the spectrum of some linear noncooperative elliptic systems with radial symmetry[J]. Differential and Integral Equations, 1995, 8(3):515-523.
  • 3BLAT J, BROWN K J. Global bifurcation of positive solutions in some systems of elliptic equations[J]. Siam J Math Anal, 1986, 17:1 339-1 353.
  • 4WU J H. Maximal attractor, stability and persistence for prey-predator model with saturation [J]. Math Comput Modelling, 1999, 30:7-16.
  • 5YE Q X, LI Z Y. Introduction to Reaction-Diffusion Equations[M]. Beijing:Science Press, 1990.
  • 6Smoller J. Shock Waves and Reaction-diffusion Equations[M]. New York-Springer-Verlag, 1983.
  • 7窦家维.一类具有扩散的SI传染病模型[J].西北大学学报(自然科学版),2003,33(1):1-4. 被引量:2

共引文献1

;
使用帮助 返回顶部