摘要
目的讨论无搅拌的chemostat竞争模型正平衡解的存在性。方法上下解方法,特征值理论,极值原理,计算锥映像不动点指数。结果得到了该系统正平衡解存在的条件。结论两竞争物种的最大出生率适当大时正平衡解存在。
Aim To discuss the existence of positive steady-state solutions for the competition model in an unstirred chemostat. Methods Using lower-upper solution method, principal eigenvalue theory, the maximum principle and the index of fixed point of compact map in cone. Results Some conditions of existence of positive steady-state solutions to the system are obtained. Conclusion Positive steady-state solutions exist when the maximal birth-rates of the two competing populations are large enough.
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第5期705-708,共4页
Journal of Northwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(10571115)