期刊文献+

抛物和椭圆射线方程混沌行为研究

A study on chaotic behavior of parabolic and elliptic ray equations
下载PDF
导出
摘要 目的研究水声射线系统的混沌行为。方法利用庞加莱截面、李雅普诺夫指数、关联维等工具分别对抛物方程和椭圆方程的非线性动力学行为进行描述。结果射线角度较小时两种方程表现出相同的定性行为特征,而射线角度较大时,两种方程的混沌行为表现出显著的差异。结论对于水声射线混沌问题,在小射线角度区间,抛物方程是良好的近似,而在大射线角度范围内,椭圆方程才能正确反映实际水声射线系统性质。 Aim To study chaotic behavior of underwater ray system. Methods Nonlinear dynamical behavior of both parabolic equation and elliptic equation were investigated by several tools such as Poincare section, Lyapunov exponent, and correlation dimension. Results When the ray angle is small, the two systems show the same qualitative behavior; however, when the ray angle is large, chaotic behaviors of the two systems show surprising differences. Conclusion In field of underwater acoustic ray chaos, the parabolic equation is an excellent approximation in interval of small ray angle, while in interval of large ray angle, the elliptic equation may describe properties of the practical underwater acoustic ray system accurately.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期716-720,共5页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金项目(19834040)
关键词 水声 射线 混沌 underwater acoustics ray chaos
  • 相关文献

参考文献11

  • 1PALMER D R,BROWN M G,TAPPERT F D,et al.Classical chaos in nonseparable wave propagation problems[J].Geophys Res Lett,1988,15:569-572.
  • 2SMITH K B,BROWN M G,TAPPERT F D.Ray chaos in underwater acoustics[J].J Acoust Soc Am,1992,91:1 939-1 949.
  • 3BROWN M G,TAPPERT F D,GO(N)I G.An investigation of sound ray dynamics in the ocean volume using an area preserving mapping[J].Wave Motion,1991,14:93-99.
  • 4TAPPERT F D,BROWN M G,GO(N)I G.Weak chaos in an area-preserving mapping for sound ray propagation[J].Phys Lett A,1991,153:181-185.
  • 5李永安,李小俊,白晋涛.渐变折射率光纤中混沌现象的研究[J].西北大学学报(自然科学版),2004,34(2):165-168. 被引量:1
  • 6JIANG Z,PITTS T A,GREENLEAF J F.Analytic investigation of chaos in a class of parabolic ray systems[J].J Acoust Soc Am,1997,101:1971-1980.
  • 7EMERYWJ,REIDTJ,DESANTO JA,et al.Mesocale variations in the deep sound channel and effect on low frequency and propagation[J].J Acoust Soc Am,1979,66:831-841.
  • 8SPIESBERGER J L,WORCESTER P F.Perturbation in travel time and ray geometry due to mesoscale disturbances:A comparison of exact and approximate calculations[J].J Acoust Soc Am,1983,74:219-225.
  • 9SMITH K B,BROWN M G,TAPPERT F D.Acoustic ray chaos induced by mesoscale structure[J].J Acoust Soc Am,1992,91:1 950-1 959.
  • 10MUNK W H.Sound channel in an exponentially stratified ocean with application to SOFOR[J].J Acoust Soc Am,1974,55:220-226.

二级参考文献3

  • 1HOLM D D, KOVACIC G. Homoclinic chaos for ray optics in a fiber[J]. Physica(D), 1991,51:177-188.
  • 2LI Xiao-jun,DU Gong-huan. Study on chaotic behavior of optical ray in a focusing fiber[J]. J Opt Soc Am(B),2001,18(3) :318-324.
  • 3周敦忠.光学[M].兰州:兰州大学出版社,1984.34-37.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部