期刊文献+

一种适用于数据流梗概计算的小波变换算法 被引量:1

Wavelet Transformation Algorithm for Synopsis Computation in Data Stream
下载PDF
导出
摘要 针对数据流上近似查询中的梗概计算,提出了一种新的基于最小误差的维压缩小波变换算法(MEDC).MEDC算法通过映射流数据时间戳,快速无冗余地维护流数据的有序性;基于最小误差,高效压缩小波变换阵列,最大化MEDC算法时间效率及近似查询实时处理能力;引入小波系数与查询准确度之间的数值性关联规则,支持小波系数梗概上的查询多级共享,整体查询执行性能最佳.实验表明,与传统小波变换、直方图和采样等算法相比,MEDC算法在数据流近似查询处理的响应速度、查询结果质量等方面具有更为优越的性能. Aiming at synopsis computation of approximate query in data stream, a novel wavelet transformation algorithm, Minimum Error based Dimension Compression (MEDC) algorithm, is proposed in this paper. On account of effective use of streaming datars time-stamp, MEDC can retain the sequence of streaming data quickly without redundancies. Besides, MEDC sharply reduces time costs and maximizes queriesr capability in real-time processing as a result of efficient compression on wavelet transform array. Last but not least, MEDC develops a novel association rule, which results in the multi-level sharing query on data synopsis and great improvement on query processing performance. Compared with traditional wavelets, histograms and sampling, the experimental results demonstrate that MEDC provides better quality of approximate answers but requires less response-time.
出处 《小型微型计算机系统》 CSCD 北大核心 2006年第11期2109-2114,共6页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术计划CIMS主题项目(2002AA1Z2308 2002AA118030)资助 辽宁省自然科学基金项目(20022027)资助 教育部优秀青年教师科研教育奖励计划资助.
关键词 数据流 近似查询处理 梗概计算 时间戳 小波变换 多级共享 data stream approximate query processing synopsis computation time-stamp wavelet transformation multi-level sharing
  • 相关文献

参考文献7

  • 1Babcock B,Babu S,Datar M,et al.Models and issues in data stream systems[C].In:Proc.of the 2002 ACM Symp,In Principles of Database Systems,June 2002:1-16.
  • 2Chakrabarti K,Garofalakis M N,Rastogi R,et al.Approximate query processing using wavelets.In:Proc.of the 2000 Intl.Conf.on Very Large Data Bases,Sept.2000:111-122.
  • 3Motwani R,Widom J,Arasu A,et al.Query processing,resource management,and approximation in a data stream management system[C].In CIDR (2003).
  • 4Carney D,Cetintemel U,Cherniack M,et al.Monitoring streams-a newclass of data management applications[C].In VLDB(August 2002).
  • 5Acharya S,Gibbons P B,Poosala V.Congressional samples for approximate answering ofgroup-by queries[C].In:Proc.of the 2000 ACM SIGMOD Intl.Conf.on Management of Data,May 2000:487-498.
  • 6Ioannidis Y E,Poosala V.Histogram-based approximation of set-valued query-answers[C].In:Proc.of the 1999 Intl.Conf.on Very Large Data Bases,Sept.1999:174-185.
  • 7Ran Q W.The theory and application of wavelet transform and mark Fourier transform[M].Harbin:Harbin Institute of Technology Press,2001.

同被引文献4

  • 1J.S.Vitter,M.Wang. Approximate computation of multidimensional aggregates of sparse data using wavelets[A].1999.
  • 2李昭原.数据库技术新进展[M]北京:清华大学出版社,2007.
  • 3L.Qiao,D.Agrawal,A.ElAbbadi. Supporting Sliding Window Queries for Continuous Data Streams[R].University of California,Santa Barbara,2003.
  • 4Samuel Karlin.庄兴无等译随机过程初级教程[M]北京:人民邮电出版社,2007.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部