期刊文献+

极化SAR图像的聚类序列投影寻踪模型方法 被引量:4

Sequential projection pursuit clustering model for POL-SAR data unsupervised classification
下载PDF
导出
摘要 针对极化SAR数据的分类问题,提出了序列投影寻踪模型方法进行极化SAR数据的无监督分类。该方法的特点是利用目标散射的极化相似性参数来表征目标特征;通过遗传算法逐步给出投影寻踪方法中的最佳投影,以获取高维数据的一维投影特征;进而采用EM算法估计混合模型的参数;最后由Bayes决策准则实现分类。该文对旧金山湾地区的极化SAR数据进行分类,得到了好的分类结果,实例计算结果分别与采用强度特征的无监督分类结果和直接利用散射熵-散射角分类的结果进行了比较,说明新方法对于极化SAR数据的分类具有明显的优越性。 On research of the classification of POLarimetric Synthetic Aperture Radar (POL-SAR) data, a Sequential Projection Pursuit Model (SPPM) for unsupervised segmentation of the POL-SAR image is proposed in this paper. The features of the high dimension data are extracted out via orthogonal projection and the classification is accomplished by the Bayes decision rule. Also the similarity parameters between two-scatter matrixes are calculated and expressed as the characters of a target and form new target characterized data. The SPPM utilize new target-characterized data to classify the target into various subclasses. Good-classified results have been obtained for the POL-SAR data classification. The classified results using the SPPM for the similarity parameters are better than those of using the SPPM for the intense information and using the scatter-entropy and scatter-angle plane. It shows our proposed method is a SAR data. good method in classification of the POL-SAR data.
作者 林伟 田铮
出处 《电波科学学报》 EI CSCD 北大核心 2006年第5期682-686,共5页 Chinese Journal of Radio Science
基金 国家自然科学基金(60375003) 航空基础科学基金(03I53059) 西北工业大学博士论文创新基金(CX200327)资助
关键词 序列投影寻踪模型 无监督分类 合成孔径雷达 极化相似性参数 EM算法 sequential projection pursuit model (SPPM), unsupervised classification, synthetic aperture radar (SAR), polarimetric similarity parameter, EM algorithm
  • 相关文献

参考文献17

  • 1J J Van Zyl. Unsupervised classification of scattering behavior using radar polarimetry data [J]. IEEE Trans. Geosci. Remote Sensing, 1989, 27(1): 36-45.
  • 2王之禹,朱敏慧,白有天.基于Mueller矩阵分解的非监督聚类算法[J].电子与信息学报,2001,23(5):454-459. 被引量:2
  • 3S R Cloude, et al.. An entropy based classification scheme for land applications of polarimetrie SAR[J].IEEE Trans. Geosci. Remote Sensing, 1997,35(1):68-78.
  • 4林世明,杨健.目标散射矩阵的特征值理论和雷达天线的最优极化[J].电波科学学报,1995,10(1):11-15. 被引量:2
  • 5E Pottier and J S Lee. Application of the H/A/α polarimetric decomposition theorem for unsupervised classification of fully polarimetric SAR data based on the Wishart distribution[C]. European Space Agency,(Special Publication) ESA SP, 2000 : 335 - 340.
  • 6J S Lee, et al.. Classification of multi-look polarimetric SAR image based on complex wishard distribution[J]. International of Journal of Remote Sensing,1994,15(11): 2299-2311.
  • 7王之禹,朱敏慧,白有天.基于最优状态的多波段全极化SAR数据ML分类方法[J].电子与信息学报,2001,23(5):507-511. 被引量:4
  • 8L Du, and J S Lee. Fuzzy classification of earth terrain covers using complex polarimetric SAR data[J]. International of Journal of Remote Sensing, 1996,17 ( 4 ):809-826.
  • 9J J Van Zyl, et al.. Bayesian classification of polarimetric SAR images using adaptive a priori probabilities[J]. International of Journal of Remote Sensing,1992,13(5) : 835-840.
  • 10K S Chen, et al.. Classification of multifrequency polarimetric SAR image using a dynamic learning neural network [J]. IEEE Trans. Geosci. Remote Sensing, 1996,34(3): 814-820.

二级参考文献7

  • 1[1]J.J.Van Zyl,Unsupervised classification of scattering behavior using radar polarimetry data,IEEE Trans.On Geosci,Remote Sensing,1989,27(1),36-45.
  • 2[2]M.Borgraud,R.T.Shin,J.A.Kong.Theoretical models for polarimetric radar clutter,Journalof Electromagnetic Waves and Applications,1987,1(1),73-89.
  • 3[4]O.Rice,Reflection of electromagnetic waves from slightly rough surfacws,Prue Appl.Math.1951,4(3),351-378.
  • 4[5]S.B.Serpico,P.Pellegretti,L.Bruzzone,Feature-selection for remote-sensing data classification SPIE,2315,1994,564-577.
  • 5[1]Brown L M J.Conway J A,Macklin J T,Polarimetirc synthetic-aperture radar,fundamental concepts and analysis tools,Journal of Research,1991,9(1),23-25
  • 6[2]Howard A Z,Jakob J vand Zyl,Daniel N H,Imaging radar polarimetry from wave synthesis Journal of Geophysical Research,1987,92(B1),683-701
  • 7[3]Middelkoop H,Janssen L L F,Implementation of temporal relationships in knowledge based classification or satellite images Photogramm,Eng Remote Sensing,1991,57(7),937-945

共引文献4

同被引文献47

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部