期刊文献+

自适应加权FIR-Myriad混合滤波算法 被引量:1

Adaptive weighted FIR-Myriad hybrid filter algorithm
下载PDF
导出
摘要 针对FIR滤波器滤除脉冲噪声以及加权Myriad滤波器滤除高斯噪声的不足,提出基于FIR滤波器和加权WMy滤波器有效组合的一类新的非线性滤波器FIR-WMyH滤波器。利用神经网络中的反向传播算法,在均方误差准则下,推导了一个基于统计梯度的自适应算法。基于稳定α分布脉冲噪声模型下的仿真结果说明了该算法的良好的性能。 A new class of nonlinear filters called as the weighted FIR-Myriad hybrid (FIR-WMyH) filters were proposed. These filters can overcome the disadvantages of FIR filter and weighted Myriad filter. Through the back-propagation algorithm used in neural networks, a stochastic gradient-based adaptive algorithm for determining optimal FIR-WMyH filters under the mean square error (MSE) criterion is derived. In the case of the stable distributed impulsive noise model, the good performance of this adaptive algorithm is demonstrated through the computer simulation results.
出处 《电波科学学报》 EI CSCD 北大核心 2006年第5期788-790,801,共4页 Chinese Journal of Radio Science
基金 辽宁省自然科学基金资助项目(20042121)
关键词 最小均方误差准则 Myriad滤波器 反向传播算法 脉冲噪声 非线性滤波器 minimum square error criterion(MSE), weighted Myriad filter, back propagation algorithm(BP), impulsive noise, nonlinear filter
  • 相关文献

参考文献7

  • 1周露,张岩,李文雯.具有输入信号的自适应跟踪滤波器[J].电波科学学报,2004,19(3):354-356. 被引量:3
  • 2E E Kuruolu. Signal processing in a -stable noise environments: a least lp-norm approach. Ph.D. dissertation, Univ. Cambridge, November 1997.
  • 3J G Gonzalez and G R Arce. Optimality of the myriad filter in practical impulsive noise environments [J].IEEE Trans. Signal Processing, 2001,49(2): 438-441.
  • 4S Kalluri and G R Arce. Robust frequency-selective filtering using weighted myriad filters admitting real valued weights[J]. IEEE Trans. Signal Processing,2001,49(11),2721-2733.
  • 5L. Yin and Y Neuvo. Fast adaptation and performance characteristics of FIR-WOS hybrid filters [J]. IEEE Trans. Signal Processing, 1994,42(7): I610-I628.
  • 6杨军,马晓岩,万山虎.一种基于混合遗传算法的加权Myriad滤波器[J].电子学报,2003,31(12):1807-1810. 被引量:1
  • 7S Haykin. Neural network: a comprehensive foundation, second edition, Tsinghua university, Beijin,1999.

二级参考文献7

共引文献2

同被引文献13

  • 1朱晓波,王首勇.α稳定分布噪声下信号的分数低阶协方差谱估计[J].空军雷达学院学报,2006,20(4):266-269. 被引量:6
  • 2SAMORODNITSKY G,TAQQU M.Stable Non-Gaussian Random Processes:Stochastic Models withInfinite Variance[M].NewYork,London:Chapmanand Hall,1994.
  • 3NIKIAS C L,SHAO M.Signal processing with alpha-stable distributions and applications[M].New York:Wiley,1995.
  • 4KAPOOR R,BANEILEE A.UWB radar detection oftargets in foliage using alpha-stable clutter models[J].IEEE Transactions on Aerospace and Electronic Sys-tems,1999,35(3):819-834.
  • 5KURUOGLU E E,MOLINA C,FITZGERALD W J.Approximation of α-stable probability densitities usingfinite mixtures of Gaussians[C]//Proc.EUSIPCO'98,Rhodes,Greece,Sept.1998.
  • 6BOUBCHIR L,FADILI J M.A closed-form nonpara-metric Bayesian estimator in the wavelet domain of im-ages using an approximateα-stable prior[J].PatternRecognition Letters,2006,27(12):1370-1382.
  • 7SWAMI A.Non-Gaussian mixture models for detection and estimation in heavy-tailed noise[C]//ICASSP'00.Proceedings.2000IEEE International Conferenceon,2000,6:3802-3805.
  • 8LI X T,SUN J,JIN L,et al.Bi-parameter CGMmodel for approximation ofα-stable PDF[J].Elec-tronics Letters,2008,44(18):1096-1097.
  • 9SZAJNOWSKI W J,Wynne J B.Simulation of de-pendent samples of symmetric alpha-stable clutter[J].IEEE Signal Processing Letters,2001,8(5):151-152.
  • 10KAY S M.Fundamentals of statistical signal pro-cessing,Volume II:Detection theory[M].PearsonEducation,Inc.,Publishing as Prentice Hall PRT,1998.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部