期刊文献+

碱性单细胞凝胶电泳技术用于淋巴细胞辐射生物剂量估算初探 被引量:1

Preliminary study on biological dosimetry using alkaline single cell gel electrophoresis of human peripheral lymphocytes
原文传递
导出
摘要 目的 初步探索碱性单细胞凝胶电泳(SCGE)方法用于电离辐射生物剂量估算的可行性.方法 不同剂量水平(0~5 Gy)的60Co γ射线照射正常人外周血,用碱性SCGE分析淋巴细胞“彗星”尾长和尾矩,建立各自的剂量-效应曲线.收集某基地放射工作从业人员的外周血进行碱性SCGE分析,并估算受照剂量,与监测物理剂量相比较.结果 淋巴细胞“彗星”尾长和尾矩均随着照射剂量的增加而增加,其剂量-效应曲线均为线性平方模式.以“彗星”尾长为指标的剂量-效应曲线方程为Y=13.59+20.87X-2.27X^2,以尾矩为指标的曲线方程为Y=8.50+15.04X-1.43X^2.参照上述方程,以尾矩为指标估算放射工作从业人员的剂量更接近实际受照剂量.结论 用碱性SCGE分析淋巴细胞“彗星”尾矩有希望成为电离辐射生物剂量计. Objective To explore the feasibility of alkaline single cell gel electrophoresis (SCGE) in biological dosimetry of ionizing radiation. Methods Normal peripheral blood samples from two healthy males were exposed to different doses eoblat-60 gamma-rays, ranged from 0 to 5 Gy, and the tail length (TL) and Oliver tail moment (TM) of the lymphoeytes were analyzed with SCGE. The dose-effect curves of TL and TM were fitted respectively. The TL and TM of lymphocytes for eight radiation workers were analyzed with SCGE, cumulative doses were estimated using the fitted TL and TM equations, and then compared with the recorded monitoring doses. Results The TLs or TMs of normal human lymphocytes were increased with the irradiation doses, and its relationship can be fitted with a linear-quadratic equations: Y = 13.59 + 20.87X - 2.27X^2 for TL, and Y = 8.50 + 15.04X - 1.43X^2 for TM, respectively ( Y denotes TL or TM value, X is radiation dose). The doses estimated with TM equation were closer to the recorded monitoring doses than that with TL equation. Conclusions The TM in lymphocytes analyzed with SCGE is a promising radiation biological dosimeter.
出处 《中华放射医学与防护杂志》 CAS CSCD 北大核心 2006年第5期446-448,共3页 Chinese Journal of Radiological Medicine and Protection
基金 国家自然科学基金资助项目(30570551) 北京市自然科学基金资助项目(7053073)
关键词 碱性单细胞凝胶电泳 淋巴细胞 辐射剂量估算 Alkaline single cell gel electrophoresis Lymphocytes Radiation dose estimation
  • 相关文献

参考文献2

二级参考文献30

  • 1Berwick, M. and Vineis, P. (2000). Markers of DNA repair and susceptibility to cancer in human: an epidemiologic review. J. Natl. Cancer Inst. 92, 874-897.
  • 2Mohrenweiser, H. W. and Jones, I. M. (1998). Variation in DNA repair is a factor in cancer susceptibility: a paradigm for the promises and perils of individual and population risk estimation. Murat. Res. 400, 15-24.
  • 3Benhamou, S. and Sarasin, A. (2000). Variability in nucleotide excision repair and cancer risk: a review. Mutat. Res. 462, 149-158.
  • 4Grossman, L. (1997). Epidemiology of ultraviolet-DNA repair capacity and human cancer. Environ. Health Perspect 1115, 927-930.
  • 5Dybdahl, M., Frentz, G., Vogel, U., Wallin, H., and Nexo, B. A. (1999). Low DNA repair is a risk factor in skin carcinogenesis: a study of basal cell carcinoma in psoriasis patients. Murat. Res. 433, 15-22.
  • 6Schmezer, P., Rajaee-Behbahani, N., Risch, A., Thiel, S., Rittgen, W., Drings, P., Dienemann, H., Kayser, K.W., Schuiz, V., and Bartsch, H. (2001). Rapid screening assay for mutagen sensitivity and DNA repair capacity in human peripheral blood lymphocytes. Mutagenesis. 16, 25-30.
  • 7Collins, A. R., Dusinskfi, M., Horvathova, E., Munro, E., Savio, M., and Stetina, R. (2001). Inter-individual differences in repair of DNA base oxidation, measured in vitro with the comet assay. Mutagenesis 16, 297-301.
  • 8Olive, P. L. (1999). Review DNA damage and repair in individ- ual cells: application of the comet assay in radiobiology. Int. J. Radiat. Biol. 75, 395-405.
  • 9Reinhardt-Poulin, P., Mclean, J. R., Deslauriers, Y., Gorman W., Cabat, S., and Rouabhia, M. (2000). The use of silver-stained "Comets" to visualize DNA damage and repair in normal and Xeroderma pigmentosum fibmblasts after exposure to simulated solar radiation. Photochem. Photobiol. 71,422-425.
  • 10Gedik C. M., Ewen, S. W. B., and Collins, A. R. (1992). Single-cell gel electrophoresis applied to the analysis of UVC damage and its repair in human cells. Int. J. Radiat. Biol. 62, 313-320.

共引文献8

同被引文献12

  • 1李琳,陈德清.包钢生产环境中天然钍诱发人外周血淋巴细胞...[J].中华放射医学与防护杂志,1993,13(1):32-34. 被引量:3
  • 2Coleman MA, Yin E, Peterson LE, et al. Low-dose irradiation alters the transcript profiles of human lymphoblstoid cells including genes associated with cytogenetic radioadaptive response. Radiat Res, 2005, 164(Pt 1): 369-382.
  • 3Matsumoto H, Takahashi A, Ohnishi T. Radiation-induced adaptive responses and bystander effects. Biol Sci Space, 2004, 18(4) : 247- 254.
  • 4Mohammadi S, Taghavi-Dehaghuni M, Gharaati M, et al. Adaptive response of blood lymphocytes of inhabitants residing in high background radiation areas of Ramsar-micronuclei, apoptosis and Comet assays. J Radiat Res, 2006, 47(3-4) : 279-285.
  • 5Barquinere JF, Barrois L, Caballin MR, et al. Occupational exposure to radiation induces an adaptive response in human lymphocytes, lnt J Radiat Biol, 1995, 67(2) : 187-191.
  • 6Joksic G, Petrovic S. Lack of adaptive response of human lymphocytes exposed to in vivo to low dose of ionizing radiation. J Envion Pathol Toxicol Oncol, 2004, 23(3) : 195-206.
  • 7Wojewodzka M, Kruszewski M, lwanenko T, et al. Application of the comet assay for monitoring DNA damage in workers exposed to chronic low-dose irradiation. Ⅰ. Strand breakage. Mutat Res, 1998, 416(1-2) : 21-35.
  • 8Otsuka K, Koana T, Tauchi H, et al. Activation of antioxidative enzyme induced by low-dose-rate whole-body gamma irradiation:adaptive response in terms of initial DNA damage. Radiat Res, 2006, 166(3) : 474-478.
  • 9Sasaki MS, Ejima Y, Tachibana A, et al. DNA damage response pathway in radioadaptive response. Mutat Res, 2002, 504 ( 1-2 ) : 101-118.
  • 10Chen DQ, Zhang CY. A simple and convenient method for gaining pure populations of lymphocytes at the first mitotic division in vitro. Mutat Res, 1992, 282(3): 227-229.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部