期刊文献+

基于主元分析的人脸特征提取MATLAB实现 被引量:1

Implementation of Facial Feature Extraction based on Principle Component Analysis by MATLAB
下载PDF
导出
摘要 人脸的特征提取是人脸识别的关键技术,采用主元分析法进行特征提取是经典的方法之一,利用M at-lab进行人脸的特征提取能显著地提高计算效率。论述了利用主元分析和奇异值分解进行人脸特征提取的方法,并详细阐述其在M atlab中的实现过程,包括读取图像文件、计算均值脸、求特征值和特征向量,计算人脸特征参数。实现过程均给出了M atlab代码。实践证明利用M atlab进行主元分析提取特征是一种有效的方法。 Facial feature extraction is a key technique of face recognition. Feature extraction using principle component analysis is one of the classical ways. Facial feature extraction by Matlab can increase computational efficiency. The facial feature extraction based on principle component analysis and singular value decomposition is discussed in this paper. The implementation methods by Matlab, which include reading image files, computing mean face, computing eigenvalue and eigenvector, getting facial feature, also are discussed in detail. For all this Matlab source codes are presented. Practice shows that feature extraction using PCA by Matlab is an effective method. And this method is useful for the researcher in this field.
作者 雷松泽
出处 《电脑开发与应用》 2006年第11期20-21,共2页 Computer Development & Applications
关键词 PCA 人脸特征提取 MATLAB 奇异值分解 PCA, facial feature extraction, Matlab, singular value decomposition
  • 相关文献

参考文献7

二级参考文献14

  • 1W Zhao, P J Phillips. Face Recognition :A Literature Survey[EB/OL], http://citeseer.nj. nec. oom/374297, html,2001 - 10 -12
  • 2彭辉,张长水,荣钢,边肇祺.基于K-L变换的人脸自动识别方法[J].清华大学学报(自然科学版),1997,37(3):67-70. 被引量:69
  • 3Gutta S,Proc Second Int Conf Automatic Face Gesture Recognition Los Alamitos,1996年,164页
  • 4Mirhosseini A R,Computer Vision Image Understanding,1998年,71卷,2期,213页
  • 5Zhang Jun,IEEE Proc,1997年,85卷,9期,1423页
  • 6Brunelli R,Poggio T.Feature recognition:features versus templates[ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1052.
  • 7Lin S H,Kung S Y,Lin L J.Face recognition/detection by probabilistic decision-based neural network[J].IEEE Transactions on Neural Networks,1997,8(1):114-132.
  • 8Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71 -86.
  • 9杨奕若,王煦法,杨未来.人脸全局特征识别研究[J].小型微型计算机系统,1997,18(11):36-42. 被引量:9
  • 10杨奕若,王煦法.利用主元分析与神经网络进行人脸识别[J].电子技术应用,1998,24(3):21-22. 被引量:16

共引文献330

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部