期刊文献+

ALMOST PERIODICITY AND EQUICONTINUITY OF THE TOPOLOGICAL TRANSFORMATION GROUP 被引量:1

ALMOST PERIODICITY AND EQUICONTINUITY OF THE TOPOLOGICAL TRANSFORMATION GROUP
下载PDF
导出
摘要 In this paper, a characterization of almost periodicity of topological transformation groups on uniform spaces is given. By searching the appropriate base for uniform structure, it is shown that the topological transformation group is topologically equivalent to an isometric one if it is uniformly equicontinuous. In this paper, a characterization of almost periodicity of topological transformation groups on uniform spaces is given. By searching the appropriate base for uniform structure, it is shown that the topological transformation group is topologically equivalent to an isometric one if it is uniformly equicontinuous.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第4期467-472,共6页 高校应用数学学报(英文版)(B辑)
基金 Supported by the NNSF of China(10371030).
关键词 uniform space topological transformation group EQUICONTINUITY almost periodicity compactly almost periodicity. uniform space, topological transformation group, equicontinuity, almost periodicity, compactly almost periodicity.
  • 相关文献

参考文献9

  • 1Vries J De.Elements of Topological Dynamics,Dordrecht,Boston,London:Kluwer Academic Publishers,1993.
  • 2Nemyckii V,Stepanov V.Qualitative Theory of Differential Equations,Princeton,NJ:Princeton University Press,1965.
  • 3Blanchard F,Host B,Maass A.Topological complexity,Ergodic Theory and Dynamical Systems,2000,20:641-662.
  • 4Gottschalk W.Characterizations of almost periodic transformation groups,Proceedings of the American Mathematical Society,1956,7:709-712.
  • 5Young S.A new proof of that a mapping is regular if and only if it is almost periodic,Michigan Mathematical Journal,1989,36(1):11-15.
  • 6Fabel P.Characterizations of compactly almost periodic homeomorphisms of metrizable space,Topology and its Applications,2004,142(1-3):1-12.
  • 7Kelly J L.General topology,D.Van Nostrand Company,Inc,Princeton NJ,1955.
  • 8Wilansky A.Topology for analysis,Ginn and Company,1970.Alabar,Florida:Krieger Publishing Company,Inc,1983.
  • 9Dugundji J.Topology,Boston:Allyn and Bacon,Inc,1966.

同被引文献7

  • 1NEMYCKII V, STEPANOV V. Qualitative Theory of Differential Equations[M]. Princeton: Princeton University Press. 1965.
  • 2BLANCHARD F, HOST B,MAASS A. Topological complexity[J]. Ergodic Theory and Dynamical Systems,2000(20) :641-662.
  • 3YOUNG S. A new proof of that a mapping is regular if and only if it is almost periodic[J]. Michigan Mathematical Journal, 1989,36 (1) : 11-15.
  • 4FABEL P. Characterizations of compactly almost periodic homeomorphisms of metrizable space [J]. Topology and Its Applications,2004, 142(1/3) : 1-12.
  • 5GOTTSCHALK W. Characterizations of almost periodic transformation groups[J]. Proe Amer Math Soe, 1956,7: 709-712.
  • 6MUNKRES J. Topology: A First Course[M]. Prentice-Hall Englewood Cliffs, 1975.
  • 7NUMAKURA K. On bicompact semigroups [J]. Math J Okayama Univ, 1952,1 : 99-108.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部