期刊文献+

单面完整约束系统的Lutzky守恒量 被引量:1

Lutzky conserved quantities for systems with unilateral holonomic constraints
下载PDF
导出
摘要 研究了单面完整约束系统的对称性与守恒量。建立了系统的运动微分方程,在时间和空间的点对称变换下,给出了系统的Lie对称性的定义,得到了由单面完整约束力学系统的Lie对称性直接导致的一类新守恒量———Lutzky守恒量,作为特例,给出了有多余坐标系统、非保守系统、Lagrange系统的Lutzky守恒量,并举例说明了该研究结果的应用。 The symmetries and conserved quantities for the systems with unilateral holonomic constraints were studied. The differential equations of motion of the systems were established. Under the point symmetric transformations of the coordinates and time, the definition of Lie symmetry of the system was given, and a new type of conserved quantities called Lutzky conserved quantities, which is directly deduced from Lie symmetries of the system, was obtained. As special cases, the Lutzky conserved quantities for the system with remainder coordinates, the non-conservative system and the Lagrange system, were given. An example was given to illustrate the application of the results.
作者 张毅
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第5期93-97,共5页 Journal of China University of Petroleum(Edition of Natural Science)
基金 江苏省高校自然科学基金资助项目(04KJA130135)
关键词 分析力学 单面约束 完整系统 对称性 Lutzky守恒量 analytical mechanics unilateral constraint holonomic system syrnmetry Lutzky conserved quantity
  • 相关文献

参考文献16

  • 1OLVER P J.Applications of Lie groups to differential equations[M].New York:Springer,1986.
  • 2BLUMAN G W,KUMEI S.Symmetries and differential equations[M].New York:Springer,1989.
  • 3LUTZKY M.Dynamical symmetries and conserved quantities[J].J Phys A:Math Gen,1979,12(7):973-981.
  • 4LUTZKY M.Non-invariance symmetries and constants of the motion[J].Phys Lett,1979,72A(2):86-88.
  • 5LUTZKY M.Origin of non-Noether invariants[J].Phys Lett,1979,75A(1,2):8-10.
  • 6梅凤翔,许学军.Form invariances and Lutzky conserved quantities for Lagrange systems[J].Chinese Physics B,2005,14(3):449-451. 被引量:6
  • 7FU Jing-Li and CHEN Li-Qun.Non-noether symmetries and conserved quantities of nonconservative dynamical systems[J].Phys Lett A,2003,317(3-4):255-259.
  • 8Журавлев ВФ, Фуфаев НА. Механика систем с неудерживающими свяэями[M]. М,1993.
  • 9LOTSTEDT P.Mechanical systems of rigid bodies subject to unilateral constraints[J].SIAM J Appl Math,1982,42(2):281-296.
  • 10张毅,梅凤翔.Differential Variational Principles and Equations of Motion of Mechanical Systems with Unilateral Constraints[J].Journal of Beijing Institute of Technology,1998,7(1):19-25. 被引量:3

二级参考文献38

共引文献60

同被引文献15

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部