期刊文献+

高尔基体堆形成的分子机制 被引量:1

下载PDF
导出
摘要 高尔基体堆(golgi stack)的形成对高尔基体行使功能起着至关重要的作用。体外的无细胞实验系统已经鉴定了很多在高尔基堆形成中起作用的蛋白,并总结了它们起作用的模式。NSF和p97能分别介导有丝分裂后的扁平囊(cisterna)重生。依赖于NSF的扁平囊重生必需“栓链(tether)”giantin- p115-GM130的作用,该“栓链”也在随后的扁平囊堆叠中起作用。扁平囊的堆叠主要依赖GRASP65和GRASP55的相互作用。哺乳动物细胞中,高尔基堆层通过侧向连接形成高尔基带(golgi ribbon)。GM130和GRASP65对高尔基带(golgi ribbon)形成是必需的。
出处 《生物学通报》 2006年第11期4-5,共2页 Bulletin of Biology
基金 中国科学院院长基金 教育部回国人员启动基金
  • 相关文献

参考文献6

  • 1Adam D.Linstedt,Golgi complex: Stacking the cisternae,Current Biology 1999,9:R893-R896.
  • 2Vladimir Lupashin, Elizabeth Sztul,Golgi tethering factors,Biochimica et Biophysica Acta.2005,1744 : 325-339.
  • 3Yanzhuang Wang,Joachim Seemann,Marc Pypaert, James Shorter and Graham Warren A direct role for GRASP65 as a mitotically regulated Golgi stacking factor, The EMBO Journal 2003,22:3279-3290.
  • 4Yanzhuang Wang, Ayano Satoh, and Graham Warren, Mapping the Functional Domains of the Golgi Stacking Factor GRASP65, THE JOURNAL OF BIOLOGICAL CHEMISTRY, Vol. 280,No.6,Issue of February 2005,11:4921-4928.
  • 5A. Diao, D. Rahman,D.J. Pappin,J.Lucocq,M.Lowe, The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation,J.Cell Biol.2003,160:201-212.
  • 6Manojkumar A. Puthenveedu, Collin Bacher, Sapna Puri, Frederick Lannil and Adam D. Linsted, GM130 and GRASP65-dependent lat eral cisternal fusion allows uniform Golgi-enzyme distribution, Nat Cell Biol.2006,8(3):238-48.

同被引文献15

  • 1Xiang Y, Wang Y Z. GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking[J]. J Cell Biol, 2010, 188(2): 237--251.
  • 2Short B, Preisinger C, Korner R, et al. A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic[J]. J Cell Biol, 2001, 155(6): 877--83.
  • 3Marra P, Maffucci T, Daniele T, et al. The GM130 and GRASP65 Golgi proteins cycle through and define a subdo- main of the intermediate compartment[J]. Nat Cell Biol, 2001, 3(12): 1 101--1 113.
  • 4Feng Y, Yu W, Li X, et al. Structural insight into Golgi membrane stacking by GRASP65 and GRASP55 proteins [J]. The Journal of Biological Chemistry, 2013, 288(39): 28 418--28 427.
  • 5Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode[J]. Macromolecular Crystallography, Pt A, 1997, 276: 307--326.
  • 6Winn M D, Ballard C C, Cowtan K D, et al. Overview of the CCP4 suite and current developments[J]. Acta crys- tallographica Section D, Biological Crystallography, 2011, 67: 235--242.
  • 7Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics[J]. Acta Crystallogr D, 2004, 60:2 126-- 2 132.
  • 8Truschel S T, Sengupta D, Foote A, et al. Structure of the membrane-tethering GRASP domain reveals a unique PDZ ligand interaction that mediates golgi Biogenesis[J]. J Biol Chem, 2011, 286(23):20 125--20 129.
  • 9Adams P D, Afonine P V, Bunkoczi G, et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution[J]. Acta Crystallogr D, 2010, 66: 213--221.
  • 10Duran J M, Kinseth M, Bossard C, et al. The role of GRASP55 in Golgi fragmentation and entry of cells into mito- sis[J]. Mol Biol Cell, 2008, 19(6): 2 579--2 587.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部