期刊文献+

解非线性规划问题的非参数罚函数多目标正交遗传算法

Non-parameter Penalty Function Multi-Objective Orthogonal Genetic Algorithm for Nonlinear Programming Problem
下载PDF
导出
摘要 对非线性规划问题的处理通常采用罚函数法,使用罚函数罚的困难在于参数的选取。本文提出了一种解非线性规划问题非参数罚函数多目标正交遗传算法,对违反约束的个体进行动态的惩罚以保持群体中不可行解的一定比例,从而不但有效增加种群的多样性,而且避免了传统的过度惩罚缺陷,使群体更好地向最优解逼近。数据实验表明该算法对带约束的非线性规划问题求解是非常有效的。 Penalty functions are often used in constrained optimization, but it is difficult to choose parameter property. In this paper, a new non-parameter penalty function multi-objective orthogonal genetic algorithm is presented to solve the nonlinear programming problem. It puts penalty to constraint violations in order to keep a ratio of infeasible solutions in population. As a result, it can not only increase the diversity of population but also avoid the defects of over-penalization. This makes the group approach optimal solution easy. The numerical experiment shows that this algorithm is effective in dealing with the nonlinear programming problem.
出处 《运筹与管理》 CSCD 2006年第5期35-38,共4页 Operations Research and Management Science
基金 国家自然科学基金资助项目(60374063) 宝鸡文理学院重点科研计划项目(ZK2548)
关键词 非线性规划 正交遗传算法 多目标优化 惩罚函数 nonlinear programming orthogonal genetic algorithm multi-objective optimization penalty function
  • 相关文献

参考文献9

  • 1Deb K,Agrawal S.A niched-penalty approach for constraint handing in genetic algorithms[A].Proc.of the Inter.Conf.In Protozoa Slovenia,Artificial Neural Nets and Genetic Algorithms[C].New York:Springer Verlag,Wien,1999.235-243.
  • 2Michalewicz Z.Genetic algorithms +date structure=evolution program[M].Berlin:3rd Edition,Springer-Verlag,1996.
  • 3Zeleny M.Multiple criterion decision making:Eight concepts of optimality[J].Human System Management,1998,17(2):97-107.
  • 4Fu Guojiang,Wang Wei Shaomei Chen Mingjun,Li Ning.Particle swarm optimizer with C-pg mutation[A].In:Proc.Congress on Computation Intelligence and Security,Part Ⅰ[C].Springer-Verlag Berlin Heidelberg,2005,639-650.
  • 5Sangameswar Venkatraman,Gary G.A generic framework for constrained optimization using genetic algorithms[J].IEEE Transaction on Evolutionary Computation,2005,9(4):423-435.
  • 6Wang Yu-ping,Liu Da-lian,Cheung Yiu-Ming.Preference bi-objective evolutionary algorithm for constrained optimization[A].In Proceedings of 2005 International Conference on Computational Intelligence and Security,Part Ⅰ[C].LNAI 3801,Y.Hao(Eds),Springer Verlag,Berlin Heideberg,2005.184-191.
  • 7Leung Yiu-Wing,Wang Yu-ping.An orthogonal genetic algorithm with quantization for global numerical optimization[J].IEEE Trans.on Evolutionary Computation,2001,5(1):41-53.
  • 8Runarsson T P,Yao X.Stochastic ranking for constrained evolutionary optimization[J].IEEE Trans.on Evolutionary Computation,2000,4(3):284-294.
  • 9Arturo Hemandez Aguirre,Salvador Botello Rioda,Carlos A.Use of multi-objective optimization concepts to handle constraints in single-objective optimization[A].Genetic and Evolutionary Computation Conference[C].Chicago,IL,USA,July,2003.573-584.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部