期刊文献+

基于物候模型的作物种植面积变化监测方法 被引量:19

Crop acreage change detection based on phenology model
下载PDF
导出
摘要 在利用多时相数据进行作物变化监测中,通常根据日历选取同一天或相近日期的遥感数据来减小植物季相变化所导致辐射差异所带来的"伪变化".但是物候存在着年际变化,且与日历日期并不完全一致,不同年份的作物的生长发育状况可能不同.该文利用气候数据建立了作物物候指标模型,利用该模型计算出的熟度指数作为选择季相差别最小的两时期遥感数据依据,选择了用于顺义地区冬小麦播种面积变化信息提取的两时期数据,并利用NOAA AVHRR/NDVI序列数据对选择结果进行了验证.结果表明利用该物候模型选择的两时期遥感数据季相匹配较好.该方法为消除或减小变化监测过程中植被季相差异所导致的辐射误差提供了新思路并进行了有益探索.该文还利用该方法,以北京顺义地区为研究区,采用图像差值法提取1999~2000年冬小麦播种面积变化信息,其中变化像元提取精度达到90%. Conventionally, land cover change detection with remote sensing was performed between images matched in Julian calendar dates. The phenology of plants often brings errors; into the final results, and it may make this method fail in some cases. Detected changes may contain difference in phenology which is not the real change of land cover. To detect accurately crop acreage change, the fluctuation of crop phenology must be excluded. In the paper, the authors devised a phenological index and applied it in the crop acreage change detection. Matching crop phonological stages allows the users to more strategically choose TM images for the analysis of crop acreage change. This methodology was applied in Shunvi, Beijing as a case study using NOAA AVHRR/ NDVI time series data to validate the selection of TM images. The results prove that the method is efficient. In addition, the authors also adopt image difference method to extract the acreage change information of winter wheat from 1999 to 2000, using the theory of the method. The extraction precision of changing pixel can reach 90%.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2006年第10期139-144,共6页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家863计划(2003AA131020)
关键词 作物种植面积 变化监测 物候模型 crop acreage change detection crop phenology model
  • 相关文献

参考文献18

二级参考文献48

  • 1池宏康.冬小麦单产的光谱数据估测模型研究[J].植物生态学报,1995,19(4):337-344. 被引量:15
  • 2陈华,张立中,方娟.小麦发育动态模拟模型的初步研究[J].中国农业气象,1995,16(1):1-4. 被引量:22
  • 3彭琳.黄土高原地区农林牧业综合发展与合理布局[M].北京:科学出版社,1991..
  • 4.京郊父母官立下军令状,130万亩农田四年后不扬尘[EB/OL].http://www.sina.tom.cn.新华网,2002年03月24,15:55.
  • 5.Landsat 手册[EB/OL].NASA, http://ltpwww, gsfc. nasa. gov/IAS/handbook/handbook_toc, html.,.
  • 6TENNAKOON SB, MURTY VVN, EIUMNOH A. Estimation of cropped area and grain-yield of rice using remote-sensing data[J]. International Journal of Remote Sensing, 1992,13(3) :427-439.
  • 7Price K P, Guo X L, Stiles J M. Optimal Landsat TM band combinations and vegetation indices for discrimination of six grassland types in eastern Kansas [J]. International Journal of Remote Sensing, 2002, 23 (23) : 5031 - 5042.
  • 8Diuk-Wasser M A, Bagayoko M, Sogoba N, et al. Mapping rice field anopheline breeding habitats in mali, West Africa, using Landsat ETM+ sensor data [J]. International Journal of Remote Sensing, 2004,25 (2) : 359-376.
  • 9Guerschman J P, Paruelo J M, Bella C Di, et al. Land cover classification in the argentine pampas using multi-temporal Landsat TM data[J]. International Journal of Remote Sensing, 2003,24 (17) : 3381 - 3402.
  • 10Doug R Oetter, Warren B Cohen, Mercedes Berterretche, et al. Land cover mapping in an agricultural setting using multiseasonal Thematic Mapper data [J]. Remote Sensing of Environment, 2000, 76 : 139 -155.

共引文献540

同被引文献409

引证文献19

二级引证文献523

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部