摘要
Considering the level distribution of soil layers, the soils surrounding pile are simulated with level finite layer elements. Supposing that the vertical deformation of the soil elements surrounding pile varies in the form of exponent function with radial distance, and considering the nonlinear constitutive relation of stress and strain, the stiffness matrix is established. The mechanics behavior of the pile—soil interface is simulated with a nonlinear interface element. This method can truly express the behavior of the pile-soil system. The load-settlement relation Q-S curves of two big diameter prototype piles on bearing test are analyzed, and satisfying results are obtained. This method is reasonable in theory and feasible in engineering.
Considering the level distribution of soil layers, the soils surrounding pile are simulated with level finite layer elements. Supposing that the vertical deformation of the soil elements surrounding pile varies in the form of exponent function with radial distance, and considering the nonlinear constitutive relation of stress and strain, the stiffness matrix is established. The mechanics behavior of the pile---soil interface is simulated with a nonlinear interface element. This method can truly express the behavior of the pile-soil system. The load-settlement relation Q-S curves of two big diameter prototype piles on bearing test are analyzed, and satisfying results are obtained. This method is reasonable in theory and feasible in engineering.