期刊文献+

基于组合SVR的非平稳时间序列的模糊建模方法 被引量:1

A Multi-SVR Based Fuzzy Modeling Method for Non-Stationary Time Series
下载PDF
导出
摘要 本文介绍一种对非平稳时间序列建模的新方法.参考Janos Abonyi提出的应用于时间序列的模糊分块算法,将该算法与改进的支持向量回归模型结合起来.首先,提出一种改进的支持向量回归的表达形式;然后,通过启发式的加权方法将模糊分块的信息与SVR结合起来;最后,提出一种基于组合SVR的建模方法.实验结果表明,本文提出的方法对于非平稳时间序列的建模具有较高的实用价值. A new approach for modeling non-stationary time series was introduced in this paper. Combine the fuzzy segmentation which was proposed by Janos Abonyi with Support Vector Machines(SVMs) .Firstly, a modified Support Vector Regression (SVR) was proposed; Secondly, fuzzy segment information was combined with SVR by heuristic weighting method; Thirdly, we discussed a model based on multi-SVR. Experimental results show that the method proposed in this paper has great practical values for non-stationary time series modeling.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第10期1929-1932,共4页 Acta Electronica Sinica
基金 国家自然科学基金(No.60473074) 辽宁省自然科学基金(No.20042015) 沈阳市自然科学基金(No.1041036-1-06-07)
关键词 非平稳时间序列 模糊分块 启发式的ε加权方法 组合支持向量回归 non-stationary time series fuzzy segmentation heuristic weighting method multi support vector regression
  • 相关文献

参考文献8

  • 1K Muller,A J Smola,G Ratsch,B Scholkopf,J Kohlmorgen,V Vapnik.Using support vector machines for time series prediction[A].In Advances in Kernel Methods:Support Vector Learning[C].Massachusetts:MIT Press,1999.243-253.
  • 2K Vasko,H Toivon en.Estimating the number of segments in time series data using permutation tests[A].In Proc IEEE ICDM' 2002[C].Maebashi:IEEE Computer Science Press,2002.466-473.
  • 3J Abonyi.Fuzzy Model Identification for Control[M].Birkhauser:Boston,2003.1-10.
  • 4R J Hathaway,J C Bezdek.Switching regression models and fuzzy clustering[J].IEEE Transactions on Fuzzy Systems,1993,1(3):195-204.
  • 5J Abonyi,B Feil,S Nemeth,P Arva.Fuzzy clustering based segmentation of time-series[A].In IDA 2003,LNCS 2810[C].Berlin Heidelberg:Springer-Verlag,2003.275-285.
  • 6J Abonyi,R Babuska,F Szeifert.Modified gath-geva fuzzy clustering for identification of takagi-sugeno fuzzy models[J].IEEE Transactions on Systems,Man,and Cybernetics,2002,32(5):312-321.
  • 7J Abonyi,B Feil,S Nemeth,P Arva.Modified Gath-Geva Clustering for Fuzzy Segmentation of Multivariate Time-series[OL].http://www.fmt.vein.hu/softcomp/segment/Abonyi _segment.pdf.
  • 8M W Chang,C J Lin,R C Weng.Analysis of nonstationary time series using support vector machines[A].In Pattern Recognition with Support Vector Machines-First International Workshop,SVM 2002,LNCS 2388[C].Berlin Heidelberg:Springer,2002.160-170.

同被引文献12

  • 1陈得宝,赵春霞.复数自适应进化规划及模糊规则基的自动提取[J].电子学报,2007,35(2):341-344. 被引量:2
  • 2Sakawa M, Mori T. An efficient genetic algorithm for job shop scheduling problems with fuzzy processing time and fuzzy due date[ J ]. Computers & Industrial Engineering, 1999,36 (2) : 325 - 341.
  • 3Sakawa M, Kubota R. Fuzzy programming for multi-objective job shop scheduling with fuzzy processing time and fuzzy due date through genetic algorithm[ J]. European Journal of Opera- tional Research, 2000,120(2) : 393 - 407.
  • 4Song X Y, Zhu Y L, et al. Study on the combination of genetic algorithms and ant colony algorithms for solving fuzzy job shop scheduling problems[ A]. Proceedings of IMACS Multi-confer- ences on Computational Engineering in Systems Applications [C]. Piscataway: IEEE,2006.1904 - 1909.
  • 5Wu C S, Li D C, Tsai T I. Applying the fuzzy ranking method to the shifting bottleneck procedure to solve scheduling prob- lems of uncertainty[ J]. International Journal of Advanced Man- ufacturing Technology,2006,31 ( 1 - 2) :98- 106.
  • 6Niu Q, Jiao B, Gu XS. Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time[ J]. Applied Mathematics and Computation,2008,205(1) :148 - 158.
  • 7Lei D M. Pareto archive particle swarm optimization for multiobjective fuzzy job shop scheduling problems[ J]. International Journal of Advanced Manufacturing Technology, 2008,37 ( 1 -2):157 - 165.
  • 8Gonza1ez-Rodrguez I,Puente J, et al. Semantics of schedules for the fuzzy job-shop problem[ J] .IEEE Transactions on Sys- tems, Man, and Cybernetics, 2008,38 (3) : 655 - 666.
  • 9Lei D M, Guo X P. Solving fuzzy flexible job shop scheduling problems using genetic algorithm[ A ]. Proceeding of Interna- tional Conference on Machine Learning and Cybernetics[ C]. Piscataway: IEEE,2008. 1014 - 1019.
  • 10Lei D M. A genetic algorithm for flexible job shop scheduling with fuzzy processing time [ J ], International Journal of Pro- duction Research,2010,48(10) :2995 - 3013.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部