摘要
本文介绍一种对非平稳时间序列建模的新方法.参考Janos Abonyi提出的应用于时间序列的模糊分块算法,将该算法与改进的支持向量回归模型结合起来.首先,提出一种改进的支持向量回归的表达形式;然后,通过启发式的加权方法将模糊分块的信息与SVR结合起来;最后,提出一种基于组合SVR的建模方法.实验结果表明,本文提出的方法对于非平稳时间序列的建模具有较高的实用价值.
A new approach for modeling non-stationary time series was introduced in this paper. Combine the fuzzy segmentation which was proposed by Janos Abonyi with Support Vector Machines(SVMs) .Firstly, a modified Support Vector Regression (SVR) was proposed; Secondly, fuzzy segment information was combined with SVR by heuristic weighting method; Thirdly, we discussed a model based on multi-SVR. Experimental results show that the method proposed in this paper has great practical values for non-stationary time series modeling.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2006年第10期1929-1932,共4页
Acta Electronica Sinica
基金
国家自然科学基金(No.60473074)
辽宁省自然科学基金(No.20042015)
沈阳市自然科学基金(No.1041036-1-06-07)
关键词
非平稳时间序列
模糊分块
启发式的ε加权方法
组合支持向量回归
non-stationary time series
fuzzy segmentation
heuristic weighting method
multi support vector regression