期刊文献+

基于PMML的自组织神经网络元模型 被引量:1

THE PMML BASED META-MODEL OF SELF-ORGANIZING MAPS
下载PDF
导出
摘要 Kohonen自组织特征映射网络SOM因其能够将高维数据映射为二维特征图而广泛应用于数据探索分析活动中。预测模型标记语言标准PMML是一个与平台及系统无关的数据挖掘模型表示语言,但其中并未包含SOM元模型的定义。通过对SOM模型的应用需求分析,提出了基于PMML的SOM元模型定义,可使模型生成与模型存储相分离,使用户在脱离模型生成系统的情况下进行模型的可视化及利用。 Self-Organizing Feature Maps (SOM), as proposed by Kohonen, has been used as a tool for data exploratory analysis by mapping high-dimensional data into a two dimensional feature map. In the emerging standard PMML( Predictive Model Markup Language) ,which is the platform and system independent representation of data mining models,there is no definition of the SOM meta-model. After the usage analysis of the SOM model ,we proposed an extension to the PMML model for SOM. The primary purpose of the PMML based meta-model of SOM is to separate model generation from model storage in order to enable users to visualize and utilize the SOM model independently of the system that generated the model.
出处 《计算机应用与软件》 CSCD 北大核心 2006年第11期37-39,共3页 Computer Applications and Software
基金 江苏省高校自然科学研究计划项目(编号:03KJB520054) 国家自然科学基金(编号:60473097)联合资助
关键词 PMML SOM 数据挖掘语言 PMML SOM Data mining language
  • 相关文献

参考文献7

  • 1T. Kohonen, Self-organizing maps [M], Spfinger-Verlag, Berlin, 1997.
  • 2S. Haykin, Neural networks: a comprehensive foundation, Tsinghua University Press,2001.
  • 3汪加才,陈奇,赵杰煜,俞瑞钊.VISMiner:一个交互式可视化数据挖掘原型系统[J].计算机工程,2003,29(1):17-19. 被引量:10
  • 4R. Grossman, S. Bailey, et al, , Predictive Modeling Markup Language(PMML). http://www.dmg.org.
  • 5汪加才,江效尧,朱艺华.新一代数据挖掘语言分析及应用[J].计算机应用研究,2004,21(9):102-106. 被引量:5
  • 6R. Andreas, Automatic Labeling of SOM:Making a Treasure-Map Reveal its Secrets, Proc. of the PAKDD'99 ,Beijing,China. Lecture Notes in Artificial Intelligence, pp. 228-237, Springer Verlag.
  • 7Ultsch A. ,Siemon H. P. Kohonen's Self-Organizing Feature Maps for Exploratory Data Analysis, Proc. INNC'90, International Neural Network Conference, Dordrecht, Netherlands, 1990, pp. 305-308.

二级参考文献16

  • 1[1]Keim D A. Visual Database Exploration Techniques. Proc. Tutorial Int.Conf. on Knowledge Discovery & Data Mining, Newport Beach, CA,1997
  • 2[2]Ankerst M. Visual Classification:An Interactive Approach to Decision Tree Construction. Proc.5th Int. Conf. On Knowledge Discovery & Data Mining(KDD'99),SanDiego,CA,1999:392-396
  • 3[3]Kohonen T. Self-organizing Maps Springer- verlag. Berlin,1997
  • 4[4]Inselberg A. The Plane with Parallel Coordinates. Special Issue on Computational Geometry, The Visual Computer, 1985, 1:69-97
  • 5[5]Ultsch A, Siemon H P. Kohonen's Self-organizing Feature Maps for Exploratory Data Analysis. In Proc. INNC'90,International Neural Network Conference,Dordrecht,Netherlands, 1990:305-308
  • 6P Chapman,J Clinton,et al.CRISP-DM 1.0[EB/OL].http://www.crisp-dm.org.
  • 7R Grossman,S Bailey,et al.Predictive Modeling Markup Language (PMML)[EB/OL].http://www.dmg.org.
  • 8Microsoft Corporation.OLE DB for Data Mining Specification[EB/OL].http://download.microsoft.com/download/dasdk/Install/1/WIN98Me/EN-US/oledbdm.exe.
  • 9(ISO/IEC) FCD 13249-6,Information Technology-Database Languages:SQL Multimedia and Application Packages,,Part 6:Data Mining(FCD=Final Committee Draft for Ballot)[EB/OL].http://www.sql99.org.
  • 10M Hornick.Java Specification Request 73:Java Data Mining (JDM),version 0.91[EB/OL].http://jcp.org/jsr/datail/73.jsp.

共引文献13

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部