期刊文献+

基于微分动力学的Boost变换器稳定性分析 被引量:1

Stability Analysis of Boost Converter Based on Differential Dynamic Theory
下载PDF
导出
摘要 从Boost变换器的状态空间平均模型出发,以微分动力学理论为基础,以状态反馈系数k1,k2为分岔变量分析了系统的稳定性,得到了系统的几种不稳定行为和稳定判据.结果表明:当占空比饱和时,系统相当于开环运行,负载的变化会导致输出电压不稳定;而当系统运行于非饱和非线性区时,系统参数决定了雅可比矩阵的特征值,而不同的雅可比矩阵特征值又决定了系统的稳定或不稳定行为.文中定性分析了系统参数对稳定性的影响,采用Matlab仿真验证了分析的正确性. The stability of Boost converter is analyzed based on the differential dynamic theory and the state-space. average model, with the feedback parameters k1 and k2 as the bifurcation variables. Several unstable behaviors and the corresponding stability criteria are thus revealed. The results indicate that, when the duty radio of the converter is saturated, the converter is open-looped, with an unstable output voltage due to the load variation, and that when the duty radio is unsaturated and the model is nonlinear, the eigenvalues of Jacobian matrix, which result in the stable or unstable behaviors of the system, are the functions of system parameters. A qualitative analysis of the relationship between system parameters and the stability is finally carried out, the correctness of which is verified by Matlab simulation.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第10期77-82,共6页 Journal of South China University of Technology(Natural Science Edition)
关键词 微分动力系统 BOOST变换器 稳定性 特征值 分岔 differential dynamic system Boost converter stability eigenvalue bifurcation
  • 相关文献

参考文献10

  • 1Tse C K, Di Bernardo M. Complex behavior in switching power converters [ J ]. Proceedings of the IEEE,2002,90(5) :768-781.
  • 2Hamill D C, Jefferies D J. Subharmonics and chaos in a controlled switched-mode power converter [ J ]. IEEE Trans Circ Syst, 1988,35 ( 1 ) : 1059-1061.
  • 3Deane J H B, Hamill D C. Instability, subharmonics and chaos in power electronics systems [ C ] //IEEE PESC Rec, [s.l. ] :[s. n. ] ,1989:34-42.
  • 4Rajasekaran V,Sun J,Heck B S. Bilinear discrete-time modeling for enhanced stability prediction and digital control design [J]. IEEE Trans Power Electron,2003,18(1) :381-389.
  • 5张波,曲颖.BUCK DC/DC变换器分岔和混沌的精确离散模型及实验研究[J].中国电机工程学报,2003,23(12):99-103. 被引量:77
  • 6李冬黎,何湘宁,张晋.仿生学在电力电子系统设计中的应用[J].中国电机工程学报,2002,22(8):17-21. 被引量:15
  • 7胡宗波,张波,邓卫华.Buck变换器混杂动态系统的能控性和能达性[J].华南理工大学学报(自然科学版),2004,32(7):23-27. 被引量:6
  • 8董镇喜,文兰,孙文祥.廖山涛论微分动力系统[M].济南:山东教育出版社,2001.
  • 9Ninomiya K, Harada K. On the maximum regulation rang in boost and back-boost converters [ C ]// IEEE PESC Rec. [s. l. ]: [s. n. ],1981:146-153.
  • 10Erickson R W, Cuk S, Middlebrook R D. Large-signal modeling and analysis of switching regulators [ C ] //IEEE PESC Rec. [s. l. ]:[s. n. ],1982:240-250.

二级参考文献21

  • 1[1]Deane J H B,Hamill D C.Instability,subharmonics,and chaos in power electronic systems[J].IEEE Trans. Power Electron.,Jul. 1990,5(3):260-268.
  • 2[2]Hamill D C,Deane J H B,Jefferies D J.Modeling of chaotic DC-DC converters by iterated nonlinear mappings[J].IEEE Tran. Power Electron.,Jan. 1992,7(1):25-36.
  • 3[3]Bernardo M di,Vasca F.Discrete-time maps for the analysis of bifurcations and chaos in DC/DC converters[J].IEEE Trans. Circuits and Syst. I,Feb. 2000,47(2):130-142.
  • 4[4]Cheng K W E,Liu M,Wu J,et al.Study of bifurcation and chaos in the current-mode controlled buck-boost DC-DC converter[C].in Proc. IEEE Industrial Electronics Society (IECON'01),2001,2:838-843.
  • 5[7]Tse C K.Flip bifurcation and chaos in three-state boost switching regulators[J].IEEE Trans. Circuits and Syst. I,Jan. 1994,41(1):16-23.
  • 6[8]Alfayyoumi M,Nayfeh A H,Borojevic D.Modeling and analysis of switching-mode DC-DC regulators[J].International Journal of Bifur-cation and Chaos,2000,10(2):373-390.
  • 7[9]Bernardo di M.Garofalo F,Glielmo L,et al.Switchings, bifurcations, and chaos in DC/DC converters[J].IEEE Trans. Circuits and Syst. I, Aug. 1998,45(2):133-141.
  • 8Morse A S.Supervisory control of families of linear setpoint controllers-part 1:Exact matching [J].IEEE Transactions on Automatic Control,1996,41 (10):1413-1431.
  • 9Liberzon D,Morse A S.Basic problems in stability and design of switched systems [J].IEEE Control Systems Magazine,1999,19 ( 5 ):59-70.
  • 10Xie G,Zheng D,Wang L.Controllability of switched linear systems [ J].IEEE Transactions on Automatic Control,2002,47 (8):1 401-1 405.

共引文献94

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部