期刊文献+

改进粒子群算法在货物装载中的应用 被引量:1

An Application of Improved Particle Swarm Algorithms to Freighting Problem
下载PDF
导出
摘要 本文采用改进粒子群算法求解货物装载问题。首先对传统背包问题进行分析,指出其在现实生活中存在的问题,提出了以最大价值为目标的更具现实意义的多目标模型,然后用粒子群算法进行求解,给出了一个算法求解的实验实例。在实现粒子群算法时,我们对基本粒子群算法进行了一些改进。实验证明采用这种改进的粒子群算法解决货物装载问题切实可行,有较高的搜索效率。 In this paper, a particle swarm algorithm was presented to solve the Freighting problem. Firstly, there are some limits in traditional knapsack problem algorithms in real world. We present a multi - objective model arming at largest value. Then we solved this problem with a Particle swarm Algorithm and experimented it use an example. In the example, we made some improvement to the basic particle swarm algorithm. The result of this experiment shows that this Particle Swarm Algorithm is available and efficient in solving Freighting problem.
出处 《信息技术与信息化》 2006年第5期86-88,共3页 Information Technology and Informatization
关键词 粒子群算法 背包问题 货物装载问题 Particle swarm Algorithms Knapsack Problem Freighting Problem
  • 相关文献

参考文献4

  • 1M R Garey,D S Johnson Computers and Intractability:A guide to the theory of NP completeness.San Francisco:W H Free man and Co,1979
  • 2KennedyJ,EberhartRC.Particle Swarm Optimization[A].Proc.IEEE International Conferenceon Neural Networks,Ⅳ[C].Piscataway,NJ:IEEE Service Center,1995.1942-1948.
  • 3Eberhart R C,Shi Y.Particle Swarm Optimization:Developments,Applications and Resources[A].Proc.Congress on Evolutionary Computation 2001[C].Piscataway,NJ:IEEE Press,2001.81-86.
  • 4吉根林.遗传算法研究综述[J].计算机应用与软件,2004,21(2):69-73. 被引量:223

二级参考文献9

共引文献222

同被引文献11

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部