期刊文献+

一种基于BP神经网络的传感器故障诊断方案 被引量:5

A Fault Diagnosis Approach to Sensor Based on BP Neural Network
下载PDF
导出
摘要 针对传感器故障,提出了一种BP网络和修正的Bayes分类算法(MB)的集成故障诊断方法.用BP神经网络建立传感器故障模型,对系统的状态和故障参数进行在线估计,再用修正的Bayes算法进行传感器故障的在线检测、分离和估计.对连续搅拌釜式反应器(CSTR)的仿真结果表明,该集成故障诊断方法能够对传感器故障进行快速准确的分离和估计,并对传感器故障具有容错性. An ihtegrated fault diagnosis approach to sensor based on back propagation (BP) neural networks is presented in this paper. A BP neural network is used to estimate the state and fault parameters of the constructed model for sensor faults. The estimated fault parameters are processed by the improved Bayes algorithm to realize the sensor fault detection, isolation, and estimation on line. The simulation for continuous stirred tank reactor (CSTR) shows that the presented approach can isolate and estimate the muhriple sensor faults quickly and accurately and the integrated system is of tolerant ability to sensor faults.
出处 《沈阳理工大学学报》 CAS 2006年第4期16-19,46,共5页 Journal of Shenyang Ligong University
关键词 故障诊断 状态估计 容错控制 fauh diagnosis state estimation fault tolerant control
  • 相关文献

参考文献2

二级参考文献14

共引文献61

同被引文献26

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部