期刊文献+

纳米金属铜靶材的微结构与性能 被引量:2

Microstructure and properties of nanocrystalline copper target material prepared by flow-levitation-molding method
下载PDF
导出
摘要 采用自悬浮定向流方法制备金属Cu纳米粉体,在25℃和1.0~1.75GPa的高压下,单向模压成型,制备含量高于95%的高密度纳米金属Cu晶体材料。用透射电镜、X射线衍射谱和场发射扫描电子显微镜对样品的结构进行表征。结果表明:X射线衍射分析的平均晶粒尺寸未退火时为19.9nm,退火后为30.5nm(TEM观察约为60nm),颗粒基本为球形;样品中除了纳米晶粒外,还出现孪晶结构;孪晶是纳米Cu粉在超高压作用下形变的重要特征之一;纳米晶体Cu样品的电阻率在室温下约为1.56×10^-7Ω·m,是粗晶Cu在室温下电阻率(0.167×10^-7Ω·m)的9.3倍。 The metallic Cu nanoparticles prepared by flow-levitation method were compacted by molding under uniaxial pressure of 1.0 - 1.75 GPa at 25 ℃, the bulk nanocrystalline Cu with high relative density of larger than 95 % was obtained. The microstructure was investigated by TEM, XRD and FESEM analysis. The results show that the spheric particles in bulk nanocrystalline metallic Cu have average grain size of 19.9 and 30.5 nm (which is about 60 nm by TEM)hy XRD before and after annealing respectively. Besides nanoscale grains twins also exist in samples. Twins are one of the important deformation characteristics of Cu nanapowders under high pressure. The electricl resistivity of nanocrystalline Cu is about 1.56×10^-7Ω·m, which is 9.3 times larger than that of the coarse-grained Cu sample (0.167×10^-7Ω·m) at 20℃.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2006年第10期1787-1792,共6页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(10475069/A0506)
关键词 纳米晶体铜 激光惯性约束聚变 电阻率 靶材 nanocrystalline copper inertial confinement fusion resistivity target material
  • 相关文献

参考文献14

  • 1WANG Yin-min,CHEN Min-gei,ZHOU Feng-hua,et al.High tensile ductility in nanostructured metal[J].Nature,2002,391:912-914.
  • 2McFadden S X,Mishra R S,Valiev R Z,et al.Low-temperature superplasticity in nanostructured nickel and metal alloys[J].Nature,1999,398:684-686.
  • 3Valiev R,Islamgaliev R K,Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J].Prog Mater Sci,2000,45:103-189.
  • 4韦建军,李朝阳,唐永建,吴卫东,杨向东.自悬浮定向流法制备纳米铜微粒及其结构表征[J].强激光与粒子束,2003,15(4):359-362. 被引量:22
  • 5LI Chang-ming,LEI Hai,TANG Yong-jian,et al,Production of copper nanoparticles by the flow-levitation method[J].Nanotechnology,2004,15:1866-1869.
  • 6楚广,唐永建,罗江山,刘伟,杨天足,黎军,洪伟.ICF物理实验用纳米Cu块体靶材的制备研究[J].强激光与粒子束,2005,17(12):1829-1834. 被引量:16
  • 7Guo L H,Li H,Fabrication and characterization of thin nano-hydroxyapatite coatings on titanium[].Surf Coat Tech,2004,185:268-274.
  • 8Nieman G W,Weertman J R.Mechanical behavior of nanocrystalline Cu and Pd[J].J Mater Res,1991,6(5):1012-1027.
  • 9舒磊,俞书宏,钱逸泰.半导体硫化物纳米微粒的制备[J].无机化学学报,1999,15(1):1-7. 被引量:82
  • 10楚广,刘伟,罗江山,唐永建,黎军,师红丽,杨天足.影响纳米Cu固体材料性能的工艺参数研究[J].强激光与粒子束,2005,17(11):1701-1704. 被引量:5

二级参考文献64

  • 1楚广.稀土对光亮镀锡层可焊性的影响[J].稀有金属与硬质合金,1993,21(2):33-36. 被引量:2
  • 2王景成.关于纳米晶材料微结构的正电子湮没研究[J].钢铁研究,1995,23(5):55-58. 被引量:5
  • 3周丕璋.惯性约束聚变(ICF)的驱动源技术[J].核物理动态,1995,12(4):37-40. 被引量:2
  • 4Siegel R W, Mann S, Crong Zhu. In nanophase material: synthesis - properties-applications[J]. Mater Res, 1994, 14(5) : 8591.
  • 5Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature[J]. Science, 2000, 287(25):1643--1647.
  • 6Kalyanaraman R, Sang Y, Krupashankara M S, et al. Synthesis and consolidation of iron nanopowders[J]. Nanostructured Materials,1998, 10(8): 1379--1392.
  • 7Bernard H K, Ganesh S. Overview:status and current developments in nanomaterials[J], International Journal of Powder Metallurgy,1999, 35(7):35--37.
  • 8Birringer. Material synthesis[J]. Mater Sci Eng, 1989, A117: 33--37.
  • 9熊家炯.材料设计[M].天津:天津大学出版社,2002.162.
  • 10Tong W P, et al. Nitriding Iron at Lower Temperatures[J]. Science, 2003,299(31):686-688.

共引文献129

同被引文献19

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部