期刊文献+

基于模糊神经网络的涡结构识别方法研究

Vortex Structure Recognition Using Fuzzy Neural Network
下载PDF
导出
摘要 研究气动光学传输效应产生的机理是红外成像末制导的共性基础技术之一,基于涡结构对光学传输效应进行建模是一种非常有效的方法,而涡结构的识别是其必要前提。文中提出一种新的涡结构识别方法,把折射率场经小波变换后的系数矩阵等效为具有一定纹理结构的图像,计算图像的共生矩阵及其统计量,由于涡结构模式复杂,特征量较多,设计了等价结构的模糊神经网络进行涡结构识别。与小波分解后直接提取特征量的识别方法相比,本文的方法从空、频角度更加准确全面地表征湍流涡结构模式,计算机仿真结果表明该方法优于神经网络的识别效率。 Investigation on the principle of the aero-optic propagation is a fundamental technology for infrared imaging homing guidance. It is an effective approach to study the model of the aero-optic propagation based on the vortex structure, and the vortex structures recognition is its necessary premise. A new vortex structure recognition method is proposed in this paper. Firstly, wavelet transform is applied to the refractive index of the flow field and wavelet module matrix is obtained. Then, the matrix is transformed to an equivalent image containing texture information. And the co-occurrence matrix and statistical parameters of the image are calculated. Furthermore, a fuzzy neural network with equivalent structure is applied to accomplish the recognition in consideration of the complex vortex structures and more characteristics. Compared with direct recognition after wavelet decomposition, the proposed method can express more characters of turbulence vortex structure in space-frequency domain. Simulation results demonstrate the validity of this method and its better efficiency than that of traditional NN.
出处 《航天控制》 CSCD 北大核心 2006年第5期4-9,共6页 Aerospace Control
基金 973资助项目(513230103-3)
关键词 气动光学 涡结构 小波变换 共生矩阵 模糊神经网络 Aero-optic Vortex structures Wavelet transform Co-occurrence matrix Fuzzy neural network
  • 相关文献

参考文献7

  • 1Jialin Zhong,Ronald J.Adrian.Extracting 3D Vortices in Turbulent Fluid Flow[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1998,20 (2):193 ~199.
  • 2Aguirre,Roberto C.Turbulent Fluid Interfaces with Applications to Mixing and Aero-optics[D].Ph.D.University of California,2005.
  • 3范宏深,倪国强,王少波.基于图像差分、小波变换和回归分析的近场反舰导弹探测[J].红外与激光工程,2004,33(6):587-591. 被引量:7
  • 4胡薇,张桂林,任仙怡.基于子空间的3D目标识别和姿态估计方法[J].红外与激光工程,2004,33(6):592-596. 被引量:7
  • 5A.Abraham,Optimization of Evolutionary Neural Networks Using Hybrid Learning Algorithms[C].IEEE 2002 Joint International Conference on Neural Networks,IEEE Press,New York,2002,3:2797 ~ 2802.
  • 6Engelbrecht A P,Cloete I,Geldenhuys J,Zurada J M.Automatic Scaling Using Gamma Learning for Feedforward Neuralnetworks,from Natural to Artificial Computing[R].1995 Lecture Notes Comput.Sci.930,1995.374 ~381.
  • 7M.Mirmehdi,P.L.Palmer,J.Kittler.Genetic Optimization of the Image Feature Extraction Process[J].Pattern Recognition Letters.1997,18 (4):355 ~ 365.

二级参考文献8

  • 1William K. Digital Image Processing: PIKS Inside. 3rd Edition[M]. New York:John Wiley&Sons Inc, 2001. 552-558.
  • 2Smith S M. ASSET-2: Real-time motion segmentation and object tracking[J]. Real-Time Imaging,1998,4(1):21-40.
  • 3Lelieveldt B P F, Mitchell S C, Vander Geest R J, et al. Time continuous segmentation of cardiac MR images using Active Appearance Motion Models [A]. International Congress Series 1230[C]. 2001. 961-966.
  • 4Lipton A, Fujiyoshi H, Patil R. Moving Target Classification and Tracking from Real-Time Video[A]. Proc of WACV'98[C]. 1998.8-14.
  • 5Arman F, Aggarwal J K. Model-based object recognition in dense range images: a review[J]. ACM Computing Surveys,1993,25(1) :5-43.
  • 6Arie J B, Nandy D. A volumetric/iconic frequency domain representation for objects with application for pose invariant face recognition[J]. PAMI, 1998, 20(5): 449-457.
  • 7Murase H, Shree K Nayar. Learning Object Models From Appearance[A]. Proc of AAAI[C]. Washington D C, 1993. 836-843.
  • 8Murase H, Shree K Nayar. Visual learning recognition of 3D objects from appearance[J]. International Journal of Computer Vision, 1995,14(1): 5-24.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部