期刊文献+

钴基催化剂F-T合成的人工神经网络模拟 被引量:2

Artificial neural network simulation of cobalt-based catalyst F-T synthesis
原文传递
导出
摘要 反应温度、压力、空速和原料气H_2/CO比等工艺操作条件对F-T合成生成重质烃的选择性影响很大。以上述操作参数为输入变量,CO的转化率、甲烷在产物烃中的质量分数C_1和重质烃的质量分数C_5^+为输出变量,采用LM算法建立了钴基催化剂F-T合成的BP神经网络模型,定量预测工艺操作条件对F-T合成的影响规律。预测结果表明,低温有利于重质烃生成,高温下CO的转化率高,但C_1也高,C_5^+重质烃的选择性较低。压力升高,C_1下降,CO的转化率和C_5^+增加。C_1随空速的提高而增加,CO的转化率和C_5^+随空速的升高而下降。低合成气H_2/CO比CO转化率和C_1较低,C_5^+重质烃高。进一步的实验验证表明,模型具有较高的预测精度,CO转化率和C_5^+的相对误差小于8%,C_1小于9%。 The reaction temperature, pressure, space velocity and H2/CO molar ratio in feed markedly influence the heavier hydrocarbon selectivity of Fiseher-Tropseh synthesis. Therefore, using operation conditions as input variables, the CO conversion, the selectivi- ty of C1 and C5^+ as output variables, a BP neural network is constructed by Levenberg-Marquardt algorithm, and wish that quantifieationally predict the regulation of operation condition effect for Fiseher-Tropseh synthesis. The predict results indicated that lower reaction temperature facilitated the synthesis of heavier hydrocarbon, the CO conversion was high and the weight fraction of heavy hydrocarbon C5^+ low under higher temperature; Increasing pressure, the methane selectivity decreased, the CO conversion and C5^+ increased; With space velocity increasing, the methane selectivity increased, and the CO conversion and C5^+ dropped down; Lower H2/CO molar ratio in feed caused low CO conversion and methane selectivity, and high C5^+. Further experimental verification suggested that the construeted model have higher prediction precision, the relative deviation less than 8% for the CO conversion and C5^+ , less than 9% for methane.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2006年第10期963-966,共4页 Computers and Applied Chemistry
基金 博士学科点专项科研基金(20050251006)
关键词 F-T合成 钴基催化剂 人工神经网络 模拟 Fischer-Tropsch synthesis, cobalt-based catalyst, artificial neural network, simulation
  • 相关文献

参考文献11

  • 1Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Applied Catalysis A : General, 1997, 161 ( 1-2) :59 -78.
  • 2Schulz H, van Steen E and Claeys M. Selectivity of mechanism of Fischer-Tropsch synthesis with iron and cobalt catalysis. Studies in Surface Science and Catalysis, 1994, 81:455 - 460.
  • 3Hammache H, Goodwin Jr JG and Oukaci R. Passivation of a Co-Ru/γ-Al2O3 Fischer-Tropsch catalyst. Catalysis Today 71, 2002:361 - 367.
  • 4Iglesia E, Soled SL and Fiato RA, et al. Dispersion, support and bimetallic effects in F-T synthesis on cobalt catalysts. Studies in Surface Science and Catalysis, 1994, 81:433 - 442.
  • 5Hosseini SA, Taeb A and Feyzi F, et al. Fischer-Tropsch synthesis over Ru promoted Co/γ-Al2O3 catalysts in a CSTR. Catalysis Communications, 2004, 5:137-143.
  • 6Li JL. Jacobs G, Zhang YQ, et al. Fischer-Tropsch synthesis:Effect of small amounts of boron, ruthenium and rhenium on Co/TiO2 catalysts. Applied Catalysis A: General, 2002, 223 : 195 -203.
  • 7Ali S, Chen B and Goodwin Jr JG. Zr promotion of Co/SiO2 for Fischer-Tropseh synthesis. Journal of Catalysis, 1995,157:35 - 41.
  • 8Sharma BK, Sharma MP and Roy SK, et al. Fischer-Tropsch synthesis with Co/SiO2-Al2O3 catalyst and steady-state modeling using artificial neural networks. Fuel, 1998, 77(15) :1763 - 1768.
  • 9Zupan Jand Gasteiger J.神经网络及其在化学中的应用.潘忠孝,陈玲然,译.合肥:中国科学技术大学出版社,2000.
  • 10赵弘,周瑞祥,林廷圻.基于Levenberg-Marquardt算法的神经网络监督控制[J].西安交通大学学报,2002,36(5):523-527. 被引量:118

二级参考文献11

共引文献156

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部