摘要
反应温度、压力、空速和原料气H_2/CO比等工艺操作条件对F-T合成生成重质烃的选择性影响很大。以上述操作参数为输入变量,CO的转化率、甲烷在产物烃中的质量分数C_1和重质烃的质量分数C_5^+为输出变量,采用LM算法建立了钴基催化剂F-T合成的BP神经网络模型,定量预测工艺操作条件对F-T合成的影响规律。预测结果表明,低温有利于重质烃生成,高温下CO的转化率高,但C_1也高,C_5^+重质烃的选择性较低。压力升高,C_1下降,CO的转化率和C_5^+增加。C_1随空速的提高而增加,CO的转化率和C_5^+随空速的升高而下降。低合成气H_2/CO比CO转化率和C_1较低,C_5^+重质烃高。进一步的实验验证表明,模型具有较高的预测精度,CO转化率和C_5^+的相对误差小于8%,C_1小于9%。
The reaction temperature, pressure, space velocity and H2/CO molar ratio in feed markedly influence the heavier hydrocarbon selectivity of Fiseher-Tropseh synthesis. Therefore, using operation conditions as input variables, the CO conversion, the selectivi- ty of C1 and C5^+ as output variables, a BP neural network is constructed by Levenberg-Marquardt algorithm, and wish that quantifieationally predict the regulation of operation condition effect for Fiseher-Tropseh synthesis. The predict results indicated that lower reaction temperature facilitated the synthesis of heavier hydrocarbon, the CO conversion was high and the weight fraction of heavy hydrocarbon C5^+ low under higher temperature; Increasing pressure, the methane selectivity decreased, the CO conversion and C5^+ increased; With space velocity increasing, the methane selectivity increased, and the CO conversion and C5^+ dropped down; Lower H2/CO molar ratio in feed caused low CO conversion and methane selectivity, and high C5^+. Further experimental verification suggested that the construeted model have higher prediction precision, the relative deviation less than 8% for the CO conversion and C5^+ , less than 9% for methane.
出处
《计算机与应用化学》
CAS
CSCD
北大核心
2006年第10期963-966,共4页
Computers and Applied Chemistry
基金
博士学科点专项科研基金(20050251006)
关键词
F-T合成
钴基催化剂
人工神经网络
模拟
Fischer-Tropsch synthesis, cobalt-based catalyst, artificial neural network, simulation