期刊文献+

一类二阶混合型泛函微分方程多重周期解 被引量:8

Multiple Periodic Solutions to a Class of Second-Order Functional Differential Equations of Mixed Type
原文传递
导出
摘要 本文利用变分原理和Z2不变群指标研究了二阶混合型泛函微分方程x"(t-τ)+f(t,x(t),x(t-τ),x(t-2τ))=0和x"(t-r)+λf1(t,x(t),x(t-τ),x(t-2τ))=x(t-τ)多重周期解.得出了有关新结果. By means of variational structure and Z2 group index theory, we obtain multiple periodic solutions to a class of second-order functional differential equations of mixed type x″(t-τ)+f(t,x(t),x(t-τ),x(t-2τ))=0 and x″(t-τ)+λf(t,x(t),x(t-τ),x(t-2τ))=x(t-τ)
出处 《应用数学学报》 CSCD 北大核心 2006年第5期821-831,共11页 Acta Mathematicae Applicatae Sinica
基金 高等学校博士点专项科研基金(20020558092) 广东省自然科学基金(031608) 国家自然科学基金(10471155)资助项目.
关键词 变分原理 Z2不变群指标 临界点 P.S.条件 多重周期解 二阶混合型泛函方程 variational structure Z2 group index theory second-order functional differentialequations of mixed type critical points periodic solutions the Palals-Smale condition
  • 相关文献

参考文献1

二级参考文献10

  • 1[1]Hale J K. Theory of Functional Differential Equations[M]. Springer-Verlag, New York, 1977.
  • 2[2]Hale J K, Lunel S M V. Introduction to Functional Differential Equations[M]. Springer-Verlag, New York, 1993.
  • 3[3]Kaplan J L, Yorke J A. Ordinary differential equations which yield periodic solution of delay equations[J]. J Math Anal Appl, 1974,48:314-324.
  • 4[4]Nussbaum R D. Periodic solutions of some nonlinear autonomous functional differential equations[J]. J Diff Eqns, 1973, 14: 360-394.
  • 5[5]LI Ji-bin, HE xue-zhong. Multiple periodic solutions of differential delay equations created by asymptotically Hamiltonian systems[J]. Nonl Anal T M A, 1998, 31(1/2):45-54.
  • 6[6]GUO Zhi-ming, XU Yuan-tong, LIN Zhuang-peng. A new Zp index theory and its applications[A]. Peter W. Bates, Kening Lu & Daoyi Xu Proceedings of the International Conference on Differential Equations and Computational Simulations[C]. World Scientific Pub Co, Singapore, 2000. 111-114.
  • 7[7]XU Yuan-tong, GUO Zhi-ming. Applications of a Zp index theory to periodic solutions for a class of functional differential equations[J]. J Math Anal Appl, 2001, 257(1): 189-205.
  • 8[8]Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications[J]. J Func Anal, 1973,14:349-381.
  • 9[9]Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations[A]. CBMS Reg Conf Series in Math[C], Amer Math Soc, 1986, 65: 7-18.
  • 10[10]Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems[M]. Springer-Verlag, New York, 1989.

共引文献6

同被引文献18

  • 1李继彬,何学忠.Proof and generalization of Kaplan-Yorke' s conjecture under the condition f' (0)>0 on periodic solution of differential delay equations[J].Science China Mathematics,1999,42(9):957-964. 被引量:8
  • 2刘淑媛,吕显瑞,齐毅.求Duffing方程周期解的Mountain Pass方法[J].吉林大学学报(理学版),2007,45(4):519-523. 被引量:6
  • 3S.Ma,Z,Wang.J.Yu.Coincidence degree and periodic solutions of Duffing equations[J].Nonlinear Analysis,1998(34):443-460.
  • 4Guo Zhiming,Xu Yuantong.Existence of Periodic Solutions to a class of Second-order Neural Difference Equations[J].Acta Anal Funct.Appl,2003(5):13-19.
  • 5Mawhin J,Willem M.Critical Point Theory and Hamitionian Systems[M].New York:Springer-verlag,1989.
  • 6Z.M.Guo,J.S.Yu.Multiplicity results for periodic solutions to delay differential equations via critial point theory[J].J.Differential Equations,2005(28):15-35.
  • 7Ma S, Wang Z, Yu J. Coincidence degree and periodic solutions of Duffing equations. Nonlinear Analysis, 1998, 34:443-460.
  • 8Shu X B, Tong Y T, Huang L H. Infinite periodic solutions to a class of second-order Sturm-Liouville neutral differential equations. Nonlinear Analysis, 2008, 68:905-911.
  • 9Guo Z M, Yu J S. Multiplicity results for periodic solutions to delay differential equations via critial point theory. J. Differential Equations, 2005, 28:15-35.
  • 10郭大均.非线性泛函分析.济南:山东科学技术出版社,2004.

引证文献8

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部