期刊文献+

一类非线性常微分方程振荡解的渐近表示

The Asymptotic Representation of a Kind of the Nonlinear Ordinary Differential Equations
原文传递
导出
摘要 在本文中,我们讨论了非线性常微分方程y"=a0|x|αy3+a1|x|βy2+α2|x|γy+α3|x|δ振荡解的渐近表示.在这个方程中将α0,α,α1,β,α2,γ,α3,δ分别换成0,0,6,0,0,0,sgn(x),1就是著名的第一类Painleve方程,而将α0,α,α1,β,α2,γ,α3,δ分别换成2,0,0,0,sgn(x),1,α0,就是著名的第二类Painleve方程.当α0,α,α1,β,α2,γ,α3,δ分别换成-β/3γ,0,0,0,1/γ,1,α,0时,可用于组合KdV方程孤立子解的化简. In this paper, some oscillating asymptotic solutions are discussed in a kind of the nonlinear ordinary differential equations. The equation is the first Painleve equation when α0,α,α1,β,α2,γ,α3,δ are replaced with 0, 0, 6, 0, 0, 0, sgn(x), 1, respectively~ And it is the second Painleve equation when α0,α,α1,β,α2,γ,α3,δ are replaced with 2, 0, 0, 0, sgn(x), 1, α, 0, respectively If α0,α,α1,β,α2,γ,α3,δ are replaced with - β/3γ, 0, 0, 0, 1/γ, 1, α, 0, respctively, the equation can be used to obtain the soditon solution for the combination KdV equation.
出处 《应用数学学报》 CSCD 北大核心 2006年第5期933-946,共14页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10471139号) 山东理工大学校基金资助项目.
关键词 非线性常微分方程 第一类 第二类Painleve方程 振荡解 渐近表示 the nonlinear order differential equations first and second Painlevre equation oscillating solutions asymptotic representation
  • 相关文献

参考文献6

  • 1Hastings S P,McLeod J B.A Boundary Value Problem Associated with the Second Painlevé Transcendent and the Korteweg-de Vries Equation.Arch.Rat.Mech.Anal,1980,73:31-51
  • 2Peter A C.Painleve Equations Nonlinear Special Functions Section 5:Asymptotics and Connection Formulae for the Painleve Equations,www.uc3m.es/uc3m/dpto/MATEM/summerschool/Leganes5.pdf
  • 3Qin Huizeng,Lu Youmin.A Note on an Open Problem about the First Painlevé Equation,contribution
  • 4Qin Huizeng,Lu Youmin.An Asymptotic Expression of a Group of Oscillating Solutions to the General Second Painlevé Equation.Communications in Applied Analysis,2006,10(2,3):269-282
  • 5Qin Huizeng,Shang Nina.Analysis of Some Bounded Solution to the General Third Painlevé Equation.MJMS,2006,18(2):125-134
  • 6Qn Huizeng,Lu Youmin.Application of Uniform Asymptotics Method to Analyzing the Asymptotic Behaviour of the General Fourth Painlevé Transcendente.IJMMS,2005,9:1421-1434

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部