摘要
在本文中,我们讨论了非线性常微分方程y"=a0|x|αy3+a1|x|βy2+α2|x|γy+α3|x|δ振荡解的渐近表示.在这个方程中将α0,α,α1,β,α2,γ,α3,δ分别换成0,0,6,0,0,0,sgn(x),1就是著名的第一类Painleve方程,而将α0,α,α1,β,α2,γ,α3,δ分别换成2,0,0,0,sgn(x),1,α0,就是著名的第二类Painleve方程.当α0,α,α1,β,α2,γ,α3,δ分别换成-β/3γ,0,0,0,1/γ,1,α,0时,可用于组合KdV方程孤立子解的化简.
In this paper, some oscillating asymptotic solutions are discussed in a kind of the nonlinear ordinary differential equations. The equation is the first Painleve equation when α0,α,α1,β,α2,γ,α3,δ are replaced with 0, 0, 6, 0, 0, 0, sgn(x), 1, respectively~ And it is the second Painleve equation when α0,α,α1,β,α2,γ,α3,δ are replaced with 2, 0, 0, 0, sgn(x), 1, α, 0, respectively If α0,α,α1,β,α2,γ,α3,δ are replaced with - β/3γ, 0, 0, 0, 1/γ, 1, α, 0, respctively, the equation can be used to obtain the soditon solution for the combination KdV equation.
出处
《应用数学学报》
CSCD
北大核心
2006年第5期933-946,共14页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(10471139号)
山东理工大学校基金资助项目.
关键词
非线性常微分方程
第一类
第二类Painleve方程
振荡解
渐近表示
the nonlinear order differential equations
first and second Painlevre equation
oscillating solutions
asymptotic representation