期刊文献+

半边图模型之聚合归约演算 被引量:3

Aggregation and Reduction Calculus of Half Edge Graph
下载PDF
导出
摘要 提出了实现自组织多层次归约的一个指导原则,即自组聚合与归约的协调准则,其核心思想是,基于多聚合准则的自组聚合演算中的各个聚合子集是可以相交的,相交的部分是下一步归约演算的基础。给出了符合上述协调准则的自组图聚合归约演算模型,聚合子图是聚合演算的结果,在归约演算中,聚合子图对应为归约顶点,子图的子边界对应为归约半边,而由子图相交部分抽象出的子图边界之间的关系则对应为归约边,从而构成了形式上完整统一的自组织多层次归约。 A generality guide principle for reduction with hierarchical self-organization is proposed.That is the coordination criterion for self-organizing aggregate process and reduce process.The core thinking is,the various aggregation subsets based upon the self-organizing aggregation calculus with diversified aggregation criterion could have the intersect parts.These intersect parts are the foundation for the reduction calculus which followed the aggregation calculus.Then,a self-organizing aggregation calculus model for self-organization graph is given.These calculi model is in keeping with the coordination criterion for self-organizing aggregate process and reduce process.The aggregate sub graphs are the outcome of the self-organizing aggregation calculus.The mutual relations among the sub graphs could deduce from the sub metes of the sub graphs.The most important calculus model i.e.the reduction calculus model is given.In this model ,the aggregate sub graph reduces to the reduction vertex one on one ,the sub mete of the sub graph reduces to the reduction half edge one on one also,and the mutual relation between the two sub graphs reduces to the reduction edge.Therefore,a formal unity reduction with hierarchical self-organization comes to realize.
作者 孟朝晖
出处 《计算机工程与应用》 CSCD 北大核心 2006年第31期71-76,共6页 Computer Engineering and Applications
关键词 多层次自组织 聚合演算 归约演算 半边 自组图 hierarchical self-organization aggregation calculus reduction calculus half edge self-organization graph
  • 相关文献

参考文献7

  • 1THEODORIDIS S,KOUTROUMBAS K.Pattern recognition[M].Second Edition.Beijing:China Machine Press,2003.
  • 2HAN J,KAMBR M.Data mining:concepts and techniques[M].[S.l.]:Academic Press,2000.
  • 3ESTER M,KRIEGEL H P,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases[C]//Proc 1996 Int conf Knowledge Discovery and Data Mining(KDD'96).Portland,OR:[s.n.],1996:226-231.
  • 4KARYPIS G,HAN E H,KUMAR V.CHAMELEON:a hierarchical clustering algorithm using dynamic modeling[J].Computer,1999,32:68-75.
  • 5张铃,张钹.模糊商空间理论(模糊粒度计算方法)[J].软件学报,2003,14(4):770-776. 被引量:207
  • 6MALLAT S.A wavelet tour of signal processing[M].Second Edition.[S.l.]:Academic Press,1999.
  • 7SEDGEWICK R.Algorithms in C++,part5:graph algorithms[M].Third Edition.[S.l.]:Pearson Education,Inc and Higher Education Press,2002.

共引文献206

同被引文献28

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部