期刊文献+

分布式数据库的全局频繁项目集高效更新算法 被引量:1

Fast Updating Algorithm for Distributed Global Frequent Itemsets
下载PDF
导出
摘要 提出了快速更新全局频繁项目集的算法IUAGFI(IncrementalUpdatingAlgorithmforGlobalFrequentItemsets)。该算法主要考虑数据库记录发生变化时全局频繁项目集的更新情况,在最坏的情况下仅需扫描各局部数据库一遍,并利用已建立的各局部改进的频繁模式树和已挖掘的结果,可避免传送某些原全局频繁项目对应的被约束子树,从而降低网络通讯代价。实验结果表明,该算法是有效可行的。 In this paper,a new algorithm IUAGFI(Incremental Updating Algorithm for Global Frequent Itemsets) is introduced,it considers the change of global frequent itemsets when dynamically changing database records.In the worst case,IUAGFI only scans every local transaction database once,and can avoid transmitting some constrained tree of original global frequent item by utilizing the created local improved frequent pattern tree and mined results.Therefore, IUAGFI uses far less communication overhead and obviously improves updating efficiency of global frequent itemsets. Experimental results show that IUAGFI is efficient and effective.
作者 宋宝莉 覃征
出处 《计算机工程与应用》 CSCD 北大核心 2006年第31期157-160,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(60542004)
关键词 数据挖掘 分布式数据库 全局频繁项目集 约束子树 更新 data mining distributed database global frequent itemsets constrained sub-tree updating
  • 相关文献

参考文献7

二级参考文献33

  • 1Ramaswamy S. et al.. On the discovery of interesting patterns in association rules. In: Proceedings of the 24th International Conference on Very Large Data Bases (VLDB), New York, 1998, 368~379
  • 2Srikant R. et al.. Mining quantitative association rules in large relational tables. In: Proceedings of the 1996 ACM SIGMOD Conference on Management of Data, Montreal, 1996, 1~12
  • 3Srikant R. et al.. Mining generalized association rules. In: Proceedings of the 21st International Conference on Very Large Data Bases (VLDB), Zurich, Switzerland, 1995, 407~419
  • 4Pen J. et al.. CLOSET: An efficient algorithm mining frequent closed itemsets. In: Proceedings of the 2000 ACM SIGMOD International Workshop on Data Mining and Knowledge Discovery, Dallas, TX, 2000, 11~20
  • 5Zaki M.J. et al.. CHARM: An efficient algorithm for closed association rule mining. Computer Science, Rensselaer Polytechnic Institute, Troy, New York: Technical Report 99-10, 1999, 1~24
  • 6Han J. et al.. Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM SIGMOD Conference On Management of Data, Dallas, TX, 2000, 1~12
  • 7Bing Liu et al.. Analyzing the subjective interestingness of association rules. Intelligent Systems, 2000, 15(5): 47~55
  • 8Cheung D.W. et al.. Maintenance of discovered association rules in large databases: an incremental updating technique. In: Proceedings of the 1996 International Conference on Data Engineering, New Orleans, Louisiana, 1996, 106~114
  • 9Feldman R. et al.. Efficient algorithms for discovering frequent sets in incremental databases. In: Proceedings of the 1997 ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Tucson, Arizona, 1997, 59~66
  • 10Agrawal R. et al.. Mining associations between sets of items in massive databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington D C, 1993, 207~216

共引文献270

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部