期刊文献+

基于模糊积分的图像分割算法融合 被引量:2

Multiple image partition algorithm fusion based on fuzzy integral
下载PDF
导出
摘要 提出了一种基于多分类器融合的阈值分割方法,采用模糊积分将多种阈值分割算法的结果进行融合,其区别于现有分类器融合算法之处在于,融合过程不仅取决于各个分类器(分割算法)的判决输出,而且与各个分类器的判决能力有关。各个分类器的判决能力用模糊测度表示,它可以解释为单个分类器判决对最终融合判决的重要程度。通过使用一组手工分割的测试图像进行算法评估,结果表明,所提出的融合算法性能不仅优于单个阈值分割算法,而且优于基于多数表决和算术平均的分类器融合算法。 A new threshold partition method based on multiple classifier fusion is proposed. It uses fuzzy integral to integrate the outputs of multiple threshold partition algorithms. The proposed method differs from the traditional classifier fusion methods in that its fusion decision not only depending on the individual classifier's output, but also incorporating the uncertainty of the classifier's ability to make decision. The classifier's decision making ability is represented by fuzzy measurement, which can be interpreted as the importance of the individual classifier's local decision to the final decision. Evaluated by a set of ground-truth segmented non-destructive images, the averaging validation index shows that the proposed method takes advantages over individual threshold partition algorithm, also over majority voting and averaging fusion methods.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2006年第10期1480-1483,共4页 Systems Engineering and Electronics
关键词 故障诊断 图像分割 多分类器融合 模糊测度 模糊积分 fault diagnosis image segmentation multi-classifier fusion fuzzy measurement fuzzy integral
  • 相关文献

参考文献11

  • 1Sezgin M,Sankur B.Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electronic Imaging,2004,13(1):146-168.
  • 2Kittler J,Illingworth J.Minimum error thresholding[J].Pattern Recognition,1986,19:41-47.
  • 3Brink A D,Pendock N E.Minimum cross-entropy threshold selection[J].Pattern Recognition,1996,29(4):179-188.
  • 4Kittler J,Hatef M,Duin R,et al.On combining classifiers[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1998,20(3):226-239.
  • 5Dietterich T G.Ensemble methods in machine learning[C]//In Lecture Notes in Computer Science 1857,Springer Verlag,2000:1-15.
  • 6Dietterich T G.Machine learning research:four current directions[J].AI Magazine,1997,18(4):97-136.
  • 7Liang J M,Yang W H,Cai X Y.Decision fusion using fuzzy integral method[C]//in Sensor Fusion:Architectures,Algorithms,and Applications IV,SPIE 4051,2000:468-475.
  • 8Yasnoff W A,Mui J K,Bacus J W.Error measures for scene segmentation[J].Pattern Recognition,1977,9:217-231.
  • 9Sezgin M,Sankur B.Selection of thresholding methods for nondestructive testing applications[C]//Proc.of IEEE International Conference on Image Processing,2001:764-767.
  • 10Zhang Y J.A survey on evaluation methods for image segmentation[J].Pattern Recognition,1996,29:1335-1346.

同被引文献40

引证文献2

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部