期刊文献+

正态模糊集合——Fuzzy集理论的新拓展 被引量:4

Normal Distribution Fuzzy Sets——A New Extension of Fuzzy Sets
下载PDF
导出
摘要 直觉模糊集(intuitionistic fuzzy sets)、区间值模糊集(interval-valued fuzzy sets)以及Vague集对普通fuzzy集的扩展是给出了隶属度的上下限,把隶属度从[0,1]区间中的一个单值推广到了[0,1]的子区间。但是该子区间犹如一个黑洞,隶属度在其内部的分布情况我们无从知晓,即这个子区间中的每一个值是等可能地作为元素的隶属度还是区间中的某些值较另外的值有更大的可能性呢?为了清晰的刻画出元素的隶属度在[0,1]区间中的分布情况,本文通过对投票模型的分析及正态分布理论,提出了一种新的模糊集合———正态模糊集合,同时对正态模糊集合的交、并、补等基本运算性质进行了讨论,文章最后对正态模糊集与fuzzy集、直觉模糊集的相互关系也作出了详细阐述。正态模糊集合是模糊集合理论的进一步推广,为我们处理模糊信息提供了一种全新的思想方法。 Comparing with the theory of fuzzy sets, intuitionistic fuzzy sets, interval-valued fuzzy sets and vague sets extend the membership degree from a single value in [0,1] to a subinterval in [0,1] , but a more detailed information is that whether all the values in the subinterval have the same probability or some values have bigger probability than the others as a membership degree, we can not obtain. In this paper, according to the investigation of vote model we present a method for expressing intuitionistic fuzzy sets by a series of normal distribution functions, then the theory of normal distribution fuzzy sets is established. This theory can well solve the problem exist in the existing generalized fuzzy theories. The notion of inclusion, union, intersection, and complement are extended to such set, and various properties of normal distribution fuzzy sets are discussed. Normal distribution fuzzy sets are the extension of intuitionistic fuzzy sets, the relationships among fuzzy sets, intuitionistic fuzzy sets and normal distribution fuzzy sets are specified.
出处 《计算机科学》 CSCD 北大核心 2006年第11期1-4,173,共5页 Computer Science
关键词 FUZZY集 直觉模糊集合 正态分布 正态模糊集 Fuzzy sets, Intuitionistic fuzzy sets, Normal distribution function, Transform
  • 相关文献

参考文献15

  • 1Zadeh L A. Fuzzy sets [J]. Information and Control, 1965, 8(3): 338-353
  • 2Atanassov K. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20 (1): 87-96
  • 3Atanassov K. More on intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1989, 33 (1): 37-46
  • 4Atanassov K. New operations defined over the intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1994, 61 (1):137-142
  • 5Atanassov K. Remarks on the,intuitionistic fuzzy sets - Ⅲ[J].Fuzzy Sets and Systems, 1995,75(3):401-402
  • 6Ooguen J. L-fuzzy sets [J]. Journal of Mathematical Analysis and Applications, 1967, 18 : 145- 174
  • 7Atanassov K T. Intuitionistic Fuzzy Sets [M]. NY: Physica-Verlag, 1999
  • 8Dubois D, Ostasiewicz W, Prade H. Fuzzy sets: History and basic notions [M]. In: Dubois D, Prade H, eds. Fundamentals of Fuzzy sets Dordrecht. Kluwer Academic Publishers, 2000. 80-93
  • 9lczany G. A method of inference in approximate reasoning based on interval valued fuzzy sets [J]. Fuzzy Sets and Systems, 1987,21 (1) :1-17
  • 10Gau Wen-Lung, Buehrer D J. Vague sets [J]. IEEE Transactions on systems, Man, and Cyernetics, 1993, 23 (2): 610-614

二级参考文献41

  • 1贺仲雄 隋志强.模糊灰色物元空间决策系统[J].系统工程与电子技术,1986,(7):1-11.
  • 2[5]Atanassov K. New Operations Defined Over The Intuitionistic Fuzzy Sets [J]. Fuzzy Sets and Systems, 1994, 61 (1) : 137-142.
  • 3[6]Atanassov K. Remarks on The Intuitionistic Fuzzy Sets - III [J]. Fuzzy Sets and Systems, 1995, 75 (3) : 401-402.
  • 4[7]Goguen J. L-Fuzzy Sets[J]. Journal of Mathematical Analysis and Applications, 1967, 18 : 145-174.
  • 5[8]Atanassov K T. Intuitionistic Fuzzy Sets [M]. NY : Physica-Verlag, 1999.
  • 6[9]Dubois D, Ostasiewicz W, Prade H. Fuzzy Sets: History and Basic Notions[A].Dubois D, Prade H. Fundamentals of Fuzzy Sets[C].Dordrecht : Kluwer Academic Publishers, 2000.80-93.
  • 7[10]Gorza lczany. A method of Inference in Approximate Reasoning Based on Interval Valued Fuzzy Sets [J]. Fuzzy Sets and Systems, 1987, 21 (1) : 1-17.
  • 8[11]Deng J L. Introduction to Grey System Theory [J]. Journal of Grey Systems, 1989, 1(1): 1-24.
  • 9[12]Gau Wen-Lung, Buehrer Daniel J. Vague sets [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23 (2): 610-614.
  • 10[13]Bustince H, Burillo P. Vague Sets Are Intuitionistic Fuzzy Sets [J]. Fuzzy Sets and Systems, 1996, 79 (3) : 403-405.

共引文献52

同被引文献34

引证文献4

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部