期刊文献+

基于数据挖掘的非单调问题的缺省规则框架

Default Rules Frame of Non-monotonous Problems Based on Data Mining
下载PDF
导出
摘要 提出一个求缺省规则的框架,通过合并条件属性所决定的类,生成组合类,可以构造覆盖更多对象的规则,生成从这些组合类映射到占优决策的规则。结果规则比确定规则至少具有两个重要的优点:(1)结构上简单;(2)即使规则相对训练集可能不完全,但是当处理未见的新事例时将表现得更好。系统对未来对象的分类质量,将在很大程度上依据系统一般化知识的能力。 It proposes a frame in finding the default rules. Through the category decided by combining conditions attributes, the new combining category can create rules to cover more objects. These combining categories reflect the advantageous rules. In contrast to the fixed rules, the result rules have at least two main advantages.. 1 ) simplicity in structure; 2) better performance in dealing with new cases despite its incompletion comparing with training set. System 's classification quantity to future object will according as ability of system generalized knowledge to a large extent.
出处 《计算机科学》 CSCD 北大核心 2006年第11期180-181,共2页 Computer Science
基金 国家863/CIMS主题资助项目(2003AA413021) 高等学校博士学科点专项科研基金资助项目(20030213027)
关键词 数据挖掘 缺省规则 关联规则 Data minging,Default rule, Association rule
  • 相关文献

参考文献10

  • 1Piatetsky-Shapiro G, Frawley W J, Konwledge Discovery in Database. AAAI/MIT, 1991
  • 2Hohe R C. Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine Learning, 1993 (11) :66-91
  • 3Bazan J G, Skowron A, Synak P. Discovery of Decision Rules from Experimental Data:[Technical Report]. University of Warsaw, Poland, 1994
  • 4Bazan J G, Skowron A, Synak P. Dynamic Reduce as a Tool for Extrating Laws from Decision Tables: [Technical Report]. University of Warsaw, Poland, 1994
  • 5Synak P. Rough Set Expert System User's Guide-Wersionl. O.University of Warswaw. Polan, 1995
  • 6Wang Jue, Wang Ju. Reduction algorithms based on discernbility matrix: the ordered attributes method. Journal of Computer Science &Technology, 2001, 16(6):489-504
  • 7Ziarko W,Yao Y Y. Rough Sets and Current Trends in Computing. SCTC. Berlin: Springer-verlag, 2001
  • 8Kumar A. New Techniques for Data Reduction in a Database System for Knowledge Discovery Applications. Journal of Intelli gent Information Systems, 1998 ( 10 ): 31 - 48
  • 9Dash M, Liu H. Feature Selection for Classification. Intelligent Data Analysis, 1997(3)
  • 10Kyrszkiewicz M. Mining Association Rules. PFKDD, 1998. 198-209

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部