期刊文献+

基于自适应活动轮廓模型的实时手势跟踪 被引量:2

Real Time Hand Tracking Based on Adaptive Active Contour Model
下载PDF
导出
摘要 在基于视觉的手势分析与识别中,一个关键环节是手势跟踪。本文提出了基于颜色信息的自适应活动轮廓模型,并与均值漂移算法相互融合,实现图像序列的实时手势跟踪。跟踪算法分为两步进行,首先应用均值漂移算法实现手部区域的定位,然后基于自适应活动轮廓模型提取手部轮廓。在跟踪过程中,轮廓提取为下一帧的区域定位更新搜索窗口,提高了搜索效率,使目标跟踪达到实时性要求。同时,本文根据跟踪区域模板与目标模板的相似性度量Bhattacaryya系数给出了在跟踪目标被遮挡时的处理方法,有效地解决了这一难题。实验结果证明了在无遮挡和遮挡两种情况下算法均能实现准确、实时的手势跟踪。 Hand tracking is an essential step for vision based gesture analysis and recognition. This paper presents an adaptive active contour model using color information, which is connected with mean shift algorithm to implement real time hand tracking in sequences. The proposed method consists of two steps: hand location using mean shift and hand extraction based on adaptive active contour model. In the process of tracking shape extraction alters the search window for hand location of next frame, which improves searching effective and makes tracking real-time. At the same time, this paper gives tracking methods in terms of the similarity measure of candidate modal and object modal i.e. Bhattacaryya coefficient while the object is occluded. Experimental results show that accurate and real-time tracking is achieved using the proposed algorithm either on the occasion of occlusion or not.
出处 《计算机科学》 CSCD 北大核心 2006年第11期192-194,204,共4页 Computer Science
基金 国家自然科学基金(30300088)
关键词 手势跟踪 活动轮廓 均值漂移 遮挡 Hand tracking,active contour,mean shift,Occlusion
  • 相关文献

参考文献10

  • 1Shan C, Wei Y, Tan T, et al. Real time hand tracking by combining particle filtering and mean shift [C]. In: Proceedings Sixth IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, 2004. 669-674
  • 2Chen F S, Fu C M, Huang C U Hand gesture recognition using a real-time tracking method and hidden Markov models [J]. Image and Vision Computing, 2003, 21(8): 745-758
  • 3Kass M, Witkinm A , Terzopoulos D. Snakes: Active contourmodels[C]. In:Proceedings of First International Conference on Computer Vision, London, 1987. 259-269
  • 4Chang J S, Kim E Y, Jung K C, et al. Real time hand tracking based on active contour model [C]. In: Computational Science and Its Applications- ICCSA 2005, Proceedings, Part Ⅳ (LectureNotes in Computer Science Vol. 3483), Singapore, 2005. 999-1006
  • 5Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577
  • 6Cheng Yizong. Mean shift, mode seeking, and clustering [J].IEEE Transaetions on Pattern Analysis and Maehine Intelligenee,1995,17(8): 790-799
  • 7周志宇,汪亚明,黄文清.基于动态图像序列的运动目标跟踪[J].浙江工程学院学报,2002,19(3):165-170. 被引量:15
  • 8Kim W, Lee C Y, Lee J J. Tracking moving obiect using Snake's jump based on image flow [J]. Mechatronics, 2001, 11 (2):119-216
  • 9Cohen L D. On active contour models and balloons [J]. Computer Vision, Graphics and Image Processing (CVGIP): Image Understanding, 1991, 53 (2): 211-218
  • 10Williams D J, Shah M. A fast algorithm for active contours and curvature estimation [J]. CVGIP: Image Understanding, 1992,55(1): 14-26

二级参考文献22

  • 1[1]Liu Y,Huang T S .Determining straight line correspondences from intensity images[J].Pattern Recognition.1991,24(6):489-504.
  • 2[2]Hang Z,Faugeras O D .Three-dimensional motion computation and object segmentation in a long sequence of stereo frames[J].International Journal on Computer Vision(IJCV).1992,7(3):211-241.
  • 3[3]Ferruz J,Ollero A.Integrated real-time vision system for vehicle control in nonstructured environments[J].Engineering Applications of Artificial Intelligence.2000,(13):215-236.
  • 4[4]Jung S K,Wohn K Y.A model-based 3-D tracking of rigid objects from a sequence of multiple perspective views[J].Pattern Recognition Letters.1998,(19):499-512.
  • 5[5]Gennery.D.Tracking known three-dimensional objects[C].Proc.National Conference on Artifical Intelligence.1982,13-17.
  • 6[6]Nickels K,Hutchinson S.Estimating uncertainth in SSD-based feature tracking[J].Image and Vision Computing.2002,(20):47-58
  • 7[7]Zhigang zhu,Guangyou xu,Bo yang,Dingji shi,Xueyin lin.VISATRAM:a real-time vision system for automatic traffic monitoring[J].Image and Vision Computing.2000,(18):781-794.
  • 8[8]Koller D,Daniilidis K,Nagel H-H.Model-based object tracking in monocular image sequences of road traffic scenes[J].International Journal on Computer Vision(IJCV).1993,(10):257-281.
  • 9[9]Haag M,Nagel H-H.Tracking of complex driving manoeuvres in traffic image sequences[J].Image and Vision Computing.1998,(16):517-527.
  • 10[10]Kass M,Witkinm A,Terzopoulos D.Snakes:Active contour models[J].International Journal on Computer Vision(IJCV).1998,1(4):321-331.

共引文献14

同被引文献9

  • 1朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 2HARITAOGLU I, HARWOOD D, DAVIS L S. W^4 : Real-time surveillance of people and their activities[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22 (7):809-830.
  • 3YILMAZ A. Object tracking by asymmetric kernel Mean Shift with automatic scale and orientation selection[C]// IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA : IEEE, 2007 : 1-6.
  • 4KHAN S M, SHAH M. A multiview approach to tracking people in crowded scenes using a planar homography constraint[C]//gth European Conference on Computer Vision. Berlin, Germany,2006 : 133-146.
  • 5FUKUNAGE K, HOSTETLER L D. The estimation of the gradient of a density function, with application in pattern recognition[J]. IEEE Transaction on Information Theory, 1975,21(1) : 32-40.
  • 6COMANICIU D, MEER P. Mean Shift analysis and applications [C]//Proceedings of IEEE International Conference Computer Vision. Kerkyra, Greece, USA: IEEE, 1999 : 1197-1203.
  • 7COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid objects using Mean Shift[C]// Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC, USA: IEEE,2000,2 : 142-149.
  • 8COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2003,25(5) : 564-577.
  • 9BRADSKI G R. Real-time face and object tracking as a component of a perceptual user interface[C]//Proceeding of IEEE Workshop on Application of Computer Vision. Princeton, NJ, USA: IEEE, 1998:214-219.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部