摘要
设Ω=[0,Xm] [0,yn」,Ω的熟知的非均匀(Ⅰ)、(Ⅱ)型三角剖分分别记为△mn(i),i=1,2.△mn(i)上的分片二元k次C1多项式的全体记为S21(△mn(i)),称为二元k次一阶光滑的样条函数空间.进一步,引入其子空间S21(△mn(i))={s∈S21(△mn(i)):Das(·,0)=Das(·,yn),Das(0,·)=Das(Xm,·),a=0,1}.称为双周期k次样条空间.本文给出了Ω的非均匀(Ⅱ)型三角剖分△mn(2)下双周期二次样条空间S21(△mn(2))的维数及一组基底.
Let Ω=[D,Xm] [0, yn], the well-known nonregular type-2 triangulation of Ω is denoted by △mn(i),and the space of piecewise C1 quadratic polynomials is denoted by S21(△mn(i)) .Define S21(△mn(i))={s∈S21(△mn(i)):Das(·,0)=Das(·,yn),Das(0,·)=Das(Xm,·),a=0,1},called double periodic quadratic spline space. In this paper, the dimension and a basis of the space S21(△mn(2)) were given.
出处
《广西科学》
CAS
1996年第3期8-11,共4页
Guangxi Sciences
基金
广西民族学院青年科研基金
关键词
三角剖分
维数
样条函数空间
二次样条函数
nonregular type-2 triangulation, double periodic quadratic spline space, dimension, basis