期刊文献+

几类非线性方程的解析行波解 被引量:1

Analytic Traveling Wave Solutions of Several Kinds of Nonlinear Equation
下载PDF
导出
摘要 本文通过对描述人口动力学中生物群体竞争的Lotka-Volterra方程和一类化学反应扩散方程的分析,应用常微中贝努里(Bernoulli)方程的解析表示,得到了这两类方程的精确行波解,并应用此方法得到了Kolmogorov-Petrovskii-Piskunov方程,广义KdV-Bwrges方程的精确行波解,此方法还适用于广义Kuramoto-Sivaskinsky等方程。 In this paper,by using the analytic expression of solutions to the well -known Bernoulliequation,the exact analytic traveling wave Solutions for two kinds of partial differential e-quations arising in population dynamics and chemical reaction are given explicity' Meanwhile,as examples of application of this methed,the explicit traveling wave solutions to the Kol-mogorov - Petrovskii - Piskunov equation, the generalized Kdv - Burges equation and thegeneralized Kuramoto-Sivaskinsky equation are obtained here.
出处 《吉首大学学报》 1996年第3期41-45,共5页
关键词 行波解 偏微分方程 非线性 L-V方程 解析解 Lotka-Volterra Equation Chemical Reaction Equation Traveling Wave Solution
  • 相关文献

同被引文献17

  • 1[1] CROSS M C , HOHENBERG P C . Pattern Formation Outside of Equilib rium[J].Rev.Mod. Phys,1993,65:851.
  • 2[2] ABLOWITZ M J , KAUP D J , NEWELL A C ,SUGUR H. The Inverse Scat te ring Transform-fourier Analysis for Nonlinear Problems[J]. Study in Appl. Phys .,1974, 53:249.
  • 3[3] ABLOWITZ M J ,CLARKSON P A . Solitons, Nonlinear Evolution Equati ons and Inverse Scattering[M].Cambridge:Cambridge Unversity Press,1991.
  • 4[4] ROGERS C,SHADWICK W E. Backlund Tansformations and Their Applicat ion[M].New York:Adademic Press,1982.
  • 5[5] KHATER A H,El-kalauwy O H.Two New Classes of Exact Solutions for th e KdV Equation Via Backlund Transformation[J]. Chaos. solitons and fractal, 19 97,8: 1901.
  • 6[6] WEISS J, TABOR M ,GARNEVADE G.The Painleve Property for Partial Differential Equations[M]. J. Math. Phys.,1983,24:522.
  • 7[7] OLVER P J. Applications of Lie Groups to Differential Equations[M ]. Berlin:Springer-Verlag,1986.
  • 8[8] HERMAN W,TAKAOKA M J. Solitary Wave Solutions of Nonlinear Evolut ion and Wave Equations Using a Direct Method and Macsyma[J]. J. Phys. A, 1990 ,23 :4805.
  • 9[9] MALFLIET W. Approximate Solution of the Damped Burgers Equations[ J]. J. Phys. A, 1993,26:723.
  • 10[10] FENG X.Reviews on Analytical Aolutions to the KdV-related Equatio ns[J] . Journal of Jishou University (Natural Science Edition) ,1998,19(2):6~14.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部