摘要
本文通过对描述人口动力学中生物群体竞争的Lotka-Volterra方程和一类化学反应扩散方程的分析,应用常微中贝努里(Bernoulli)方程的解析表示,得到了这两类方程的精确行波解,并应用此方法得到了Kolmogorov-Petrovskii-Piskunov方程,广义KdV-Bwrges方程的精确行波解,此方法还适用于广义Kuramoto-Sivaskinsky等方程。
In this paper,by using the analytic expression of solutions to the well -known Bernoulliequation,the exact analytic traveling wave Solutions for two kinds of partial differential e-quations arising in population dynamics and chemical reaction are given explicity' Meanwhile,as examples of application of this methed,the explicit traveling wave solutions to the Kol-mogorov - Petrovskii - Piskunov equation, the generalized Kdv - Burges equation and thegeneralized Kuramoto-Sivaskinsky equation are obtained here.
关键词
行波解
偏微分方程
非线性
L-V方程
解析解
Lotka-Volterra Equation
Chemical Reaction
Equation
Traveling Wave Solution