期刊文献+

Controlling chaos using Takagi-Sugeno fuzzy model and adaptive adjustment 被引量:3

Controlling chaos using Takagi-Sugeno fuzzy model and adaptive adjustment
下载PDF
导出
摘要 In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control from Lyapunov stability theory. The proposed approach offers a systematic design procedure for stabilizing a large class of chaotic systems in the literature about chaos research. The simulation results on Rossler's system verify the effectiveness of the proposed methods. In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control from Lyapunov stability theory. The proposed approach offers a systematic design procedure for stabilizing a large class of chaotic systems in the literature about chaos research. The simulation results on Rossler's system verify the effectiveness of the proposed methods.
作者 郑永爱
机构地区 Department of Computer
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第11期2549-2552,共4页 中国物理B(英文版)
基金 Project supported by the Natural Science Foundation of Yangzhou University of China (Grant No KK0513109).
关键词 controlling chaos adaptive adjustment mechanism Rossler system TS fuzzy model controlling chaos, adaptive adjustment mechanism, Rossler system, TS fuzzy model
  • 相关文献

参考文献19

  • 1Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Left.64 1196
  • 2Li W and Chen S G 2001 Acta Phys. Sin. 50 1434 (in Chinese)
  • 3Yue L J and Shen K 2005 Chin. Phys. 14 1760
  • 4Chen G R, Fang J Q and Hong Y G 1999 Chin. Phys. 8416
  • 5Huang W 2000 Phys. Rev. E 61 R1012
  • 6Huaag W 2000 Phys. Rev. E 62 3455
  • 7Fang J Q 1996 Progr. Phys. 16 1 (in Chinese)
  • 8Chen G and Dong X 1998 From Chaos to Order-Perspectives, Methodologies, and Applications (Singapore: World Scientific)
  • 9Bu S, Wang S and Ye H 2001 Phys. Rev. E 64 046209
  • 10Luo X S, Chen G R, Fang J Q, Zou Y L and Quan H J2003 Acta Phys. Sin. 52 790 (in Chinese)

同被引文献14

  • 1孙克辉,唐汇国,张泰山.离散混沌系统的线性和非线性反馈同步法及其条件[J].信息与控制,2004,33(4):413-416. 被引量:2
  • 2孙黎霞,冯勇,郑雪梅.非匹配不确定混沌系统的有限时间同步[J].电机与控制学报,2006,10(3):324-328. 被引量:2
  • 3Nazzal J M,Natsheh A N.Chaos control using sliding-mode theory[J].Chaos,Solitons & Fractals,2007,33(2):695-702.
  • 4Lü Jin-hu,Lu Jun-an.Controlling uncertain Lü system using linear feedback[J].Chaos,Solitons & Fractals,2003,17(1):127-133.
  • 5Feng Jian-wen,Xu Chen,Tang Jian-liang.Controlling Chen's chaotic attractor using two different techniques based on parameter identification[J].Chaos,Solitons & Fractals,2007,32(4):1413-1418.
  • 6Shen Li-qun,Wang Mao.Robust synchronization and parameter identification on a class of uncertain chaotic systems[J].Chaos,Solitons & Fractals,2008,38(1):106-111.
  • 7Chang Jen-fuh,Yang Yi-sung,Liao The-lu,et al.Parameter identification of chaotic systems using evolutionary programming approach[J].Chaos,Solitons & Fractals,2008,35(4):2074-2079.
  • 8Chen Ai-min,Lu Jun-an,Lü Jin-hu,et al.Generating hyperchaotic Lü attractor via state feedback control[J].Physica A,2006,364:103-110.
  • 9Bai E W,Lonngren K E.Synchronization of two Lorenz systems using active control[J].Chaos,Solitons & Fractals,1997,8(1):51-58.
  • 10Ott E,Grebogi C,York J.Controlling chaos[J].Physical Review Letters,1990,64(11):1196-1199.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部