期刊文献+

On Variation of Single Birth Processes

On Variation of Single Birth Processes
原文传递
导出
摘要 Suppose {X(t); t≥ 0} is a single birth process with birth rate qii+l (i 〉 0) and death rate qij (i 〉 j ≥ 0). It is proved in this paper that (i) if there exists aconstant c≥ 0 such that b(i)-a(i)+ci is nondecreasing with respect to i and a(i) + u(i) - ci ≥ 0 (i≥ 0), then VarX(t)-EX(t)≥-X(0)e^-2ct,t≥0,or (ii) if there exists a constant u(i) - c≥ 0 such that b(i)-a(i)+ci is non-increasing with respect to i and a(i)+u(i)-ci≤0(i≥0),then VarX(t) - EX(t) ≤ -X(0)e^-2c,t ≥ 0 Hereb(i) = qii+1, a(0) = 0, a(i) = ∑j=^ijqii-j (i≥ 1), u(0) = u(1) =0 and u(i) = 1/2∑j=^ij(j - 1)qii-j (i ≥ 2) . This result covers the results for birth-death processes obtained in [7]. Suppose {X(t); t≥ 0} is a single birth process with birth rate qii+l (i 〉 0) and death rate qij (i 〉 j ≥ 0). It is proved in this paper that (i) if there exists aconstant c≥ 0 such that b(i)-a(i)+ci is nondecreasing with respect to i and a(i) + u(i) - ci ≥ 0 (i≥ 0), then VarX(t)-EX(t)≥-X(0)e^-2ct,t≥0,or (ii) if there exists a constant u(i) - c≥ 0 such that b(i)-a(i)+ci is non-increasing with respect to i and a(i)+u(i)-ci≤0(i≥0),then VarX(t) - EX(t) ≤ -X(0)e^-2c,t ≥ 0 Hereb(i) = qii+1, a(0) = 0, a(i) = ∑j=^ijqii-j (i≥ 1), u(0) = u(1) =0 and u(i) = 1/2∑j=^ij(j - 1)qii-j (i ≥ 2) . This result covers the results for birth-death processes obtained in [7].
作者 Jun-ping Li
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2006年第4期663-670,共8页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.10471130,10371024)
关键词 Single birth process birth-death process VARIATION birth rate death rate Single birth process, birth-death process, variation, birth rate, death rate
  • 相关文献

参考文献1

二级参考文献2

  • 1Sun H X,Chin J Appl Prob Stat,1994年,10卷,225页
  • 2Chen M F,From Markov Chains to Non-Equilibrium Particel Systems,1992年

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部