期刊文献+

How can the Cross-Link Adducts Formed by Novel Trans Platinum Drug be Influenced by Hydrogen Bond

How can the Cross-Link Adducts Formed by Novel Trans Platinum Drug be Influenced by Hydrogen Bond
原文传递
导出
摘要 A systematic quantum chemical characterization of intrinsic structure, energies and spectral properties of all the studied cross-link adducts formed by the novel trans platinum with thiazole ligand has been carried out at B3LYP/6-31G^* level of theory with the Lanl2dz pseudo potential basis set for the Pt atom. Special attention has been paid to the relative stability of these complexes and the factors that probably alter the order of the relative stability. The important influence of hydrogen bond on the structures, the energies and the spectral property was revealed. Other factors that contribute to relative stability including solvation effect, entropy and electronic delocalization energy were taken into account. The stability energy of the whole complex, and the interaction energy between two purine bases and the [Pt-(NH3)thiazole]^2+ group were adopted to study the interplay among subsystems and their contribution to relative stability of all the studied cross-link model. Finally, basic spectral properties of these complexes including H(8) chemical shifts of all the studied complexes and the VCD (vibrational circular dichroism) spectra of two pairs of GG chelate enantiomers, were provided in order to define the structure of the most possible duplex bearing novel trans platinum drug lesions. A systematic quantum chemical characterization of intrinsic structure, energies and spectral properties of all the studied cross-link adducts formed by the novel trans platinum with thiazole ligand has been carried out at B3LYP/6-31G^* level of theory with the Lanl2dz pseudo potential basis set for the Pt atom. Special attention has been paid to the relative stability of these complexes and the factors that probably alter the order of the relative stability. The important influence of hydrogen bond on the structures, the energies and the spectral property was revealed. Other factors that contribute to relative stability including solvation effect, entropy and electronic delocalization energy were taken into account. The stability energy of the whole complex, and the interaction energy between two purine bases and the [Pt-(NH3)thiazole]^2+ group were adopted to study the interplay among subsystems and their contribution to relative stability of all the studied cross-link model. Finally, basic spectral properties of these complexes including H(8) chemical shifts of all the studied complexes and the VCD (vibrational circular dichroism) spectra of two pairs of GG chelate enantiomers, were provided in order to define the structure of the most possible duplex bearing novel trans platinum drug lesions.
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2006年第11期1514-1522,共9页 中国化学(英文版)
基金 Project supported by the Science Foundation of Jinan University (No. 639).
关键词 hydrogen bond VCD spectrum ENANTIOMER cross-link (CL) DFT hydrogen bond, VCD spectrum, enantiomer, cross-link (CL), DFT
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部