期刊文献+

入侵检测中贝叶斯分类器改进的研究 被引量:1

Improved Bayesian Classifier of Intrusion Detection
下载PDF
导出
摘要 介绍了一个改进的贝叶斯分类器,其中利用了滑动窗口技术改善入侵检测的实时性能和可控制性能。同时在入侵检测的结构中引入一个性能调节器,它可以动态调整系统参数,提高系统的运行性能,使系统成为一个自动的、有意识的安全系统。 Introduces an improved Bayesian classifier, which uses the skipping window technology to reform the rcaction time and facilitate the control of the intrustion detection system. Furthermore,adopt a performance adjuster in the IDS.which can dynamically adjust the systern pararoeters to reform the running performance of the IDS, that make the IDS, to be an automatic, conscious security system.
出处 《计算机技术与发展》 2006年第11期154-155,178,共3页 Computer Technology and Development
基金 国防科工委国防基础科研项目(S0500B003)
关键词 入侵检测 贝叶斯 分类器 滑动窗口 性能调节器 intrusion detection Baycsian elassifier skipping windows performance adjuster
  • 相关文献

参考文献6

  • 1Lee Wenke,Stolfo S J,Mok K W.A Data Mining Framework for Building Intrusion Detection Models[C]//Proceedings of the 1999 IEEE Symposium on Security and Privacy.Los Alamos,CA:IEEE Computer Society Press,1999:120-132.
  • 2Wong M L,Leung K S.An Efficient Data Mining Method for Learning Bayesian Networks Using an Evolutionary Algorithm -Based Hybrid Approach[J].IEEE Transactions on Evolutionary Computation,2004,8(4):378-404.
  • 3张琨,徐永红,王珩,刘凤玉.用于入侵检测的贝叶斯网络[J].小型微型计算机系统,2003,24(5):913-915. 被引量:8
  • 4Kruegel C,Mutz D,Robertson W,et al.Bayesian Event Classification for Intrusion Detection[C] //Proceedings 19th Annual Computer Security Applications Conference.Los Alamos,CA:IEEE Computer Society Press,2003:14-23.
  • 5白耀辉,陈明,王举群.利用朴素贝叶斯方法实现异常检测[J].计算机工程与应用,2005,41(34):131-132. 被引量:8
  • 6牛建强,曹元大,阎慧.基于数据挖掘的CIDF协同交换[J].计算机工程,2003,29(14):35-36. 被引量:1

二级参考文献12

  • 1[1]Anup K Ghosh,Aaron Schwartzbard.A study is using neural networks for anomaly and misuse detection[C].In:The 8th USENIX Security Symposium,Washington DC,1999
  • 2[2]B Balajinath,S V Raghavan.Intrusion detection through learning behavior model[J].Computer Communication,2001 ;24(12):1202~1212
  • 3[3]S Jha,K Tan,R A Maxion.Markov chains,classifiers and intrusion detection[C].In:The 14th IEEE Computer Security Foundations Workshop,Canada,2001
  • 4[5]Wenke Lee,S J Stolfo,K W Mok.A data mining framework for building intrusion detection models[C].In:The 1999 IEEE Symposium on Security and Privacy,Oakland,CA,1999
  • 5[6]Elkan C.Results of the KDD'99 Classifier Learning Contest.http://www-cse.ucsd.edu users/elkan/clresults.html
  • 6Lee W,Stolfo S.Data Mining Approachcs for Intrusion Detection. In Proceedings of the Seventh USENIX Security Symposium(SECURITY'98), San Antonio, TX, 1998-01.
  • 7Lee W, Stolfo S, Mok K.Mining Audit Data to Build Intrusion Deteetion Models.In Proceedings of the Fourth Intermational Conference on Knowledge Discovery and Data Mining (KDD '98), Nexv York. NY,1998-08.
  • 8Bace R G.Intrusion Detection. Macmillan Technical Publishing, U.S.A., 1999.
  • 9Paxon V.Bro:A System tbr Detecting Network Intruders in Rcal-time. Proc.of the Seventh LISENIX Security Symp,San Antonio,TX,1998-01.
  • 10Bishop M.A Standard Audit Log Format.In Proceedings of the 18th National Information Systems Security Conference, 1995-10:136-145.

共引文献14

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部