期刊文献+

基于人工神经网络的混凝土碳化深度研究

Research on Carbonation of Concrete Based on Artificial Neural Network
下载PDF
导出
摘要 介绍了BP神经网络的基本概念与结构,提出了计算和预测混凝土碳化深度的神经网络模型。建立1-3-1单因子(时间)输入向量网络与传统回归分析方法进行比较;建立6-4-1多因子输入向量网络计算及预测混凝土碳化深度。分析结果表明该模型计算和预测精度都能达到工程要求,适合在工程中应用。 Introduced the primary concepts and components of BP neural network. A model based on BP neural network is preented to calculate and forceast carbonation depth. Build 1 - 3 - 1 network with single inputs(time) to calculaste carbonation depth, compared with th( result of traditional recur,sire analysis; build 6 - 4 - 1 network with multiple inputs to ealeulate and forecast earbonation depth. It is concluded through analysis that the BP network model has high precision in calculation and forecast and the model is suitable for practical use.
出处 《计算机技术与发展》 2006年第11期231-233,共3页 Computer Technology and Development
关键词 神经网络 BP算法 混凝土 碳化 neural network BP algorithm conerete carbonation
  • 相关文献

参考文献5

  • 1朱安民.混凝土碳化与钢筋混凝土耐久性[J].混凝土,1992(6):18-22. 被引量:127
  • 2Smolczyk H G.Carbonation of Concrete-Written Discussion[C]//Proceedings of 5th international symposium on chemistry of cement.Tokyo:[s.n.],1968:343-368.
  • 3CENGIZ D A.Accelerated carbonation and testing concrete made with fly ash[J].Construction and Building Materials,2003,17(3):147-152.
  • 4Khanml,Lynsdce C J.Strength,permeability and carbonation of high performance concrete[J].Cement and Concrete Research,2002,32(1):123-131.
  • 5HaganMT DemuthHB BealeMH 戴葵 宋辉 潭明峰 等译.神经网络设计[M].北京:机械工业出版社,2002..

共引文献215

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部