期刊文献+

叠加势V(r)=B_6■+B_5■+B_4■+B_3■+B_2■+B_1 r schrdinger方程的解析解 被引量:3

Analytic solution to the schrdinger equation for the superposition potential V(r)=B_6■+B_5■+B_4■+B_3■+B_2■+B_1r
下载PDF
导出
摘要 根据波函数的有限性和叠加势函数的渐近性质,通过待定波函数的设定,得到势函数表示为V(r)=B6r6+B5r5+B4r4+B3r3+B2r2+B1r的径向schr dinger方程的精确的能量本征值和本征波函数。 Using an ansatz for the eigenfunction, we obtain the analytic solution to the schroedinger equation for the superposition potential V(r) = B6r^6+B5r^5+B4r^4+B3r^3+B2r^2+B1r
作者 周国中
出处 《贵州师范大学学报(自然科学版)》 CAS 2006年第4期71-73,共3页 Journal of Guizhou Normal University:Natural Sciences
基金 金华市现代运程教育学会研究课题(NO.JYCJY0504)
关键词 叠加势V(r)=B6r^6+B5r^5+B4r^4+B3r^3+B2r^2+B1r SCHROEDINGER方程 解析解 superposition potential V(r) = B6r^6+B5r^5+B4r^4+B3r^3+B2r^2+B1r schroedinger equation analytic solution
  • 相关文献

参考文献7

二级参考文献13

  • 1曾谨言.量子力学导论[M].北京:北京大学出版社,1992,202..
  • 2周国中.叠加势V(r)=A1r6+A2r2+B2r-4+B1r-6径向Schrodinger方程的精确解[J].烟台大学学报,1996,:4-4.
  • 3Znojil M. Singular anharmonicities and the anylytic continued fractions[J]. Math Gen(Phys A), 1982,15:2111.
  • 4Znojil M. Singular anharmonicities and the anylytic continued fractions Ⅰ: The potentials[J]. Math Phys, 1989,30:23.
  • 5Znojil M. Singular anharmonicities and the anylytic continued fractions Ⅱ :The potentials [J]. Math Phys, 1990,31:108.
  • 6Znojil M. Singular anharmonicities and the analytic continued fraction[J]. Phys A Math Gen, 1982,(15):2111.
  • 7R S kaushal. An exact solution of the schrdinger wave equation for a sextic potential[J].Phys A,1989,142:57.
  • 8R S Kaushal and D.Parashar On the quantum bound states for the potential V(r)=cr^-6+br^-4+ar^2[J]. Phys A, 1992, 170:335.
  • 9Landtman M. Calculation of low lying states in the potential V(r)=cr^-6+br^-4+ar^2 using B-spline basis set[J]. Phys A, 1993, 175:147.
  • 10曾谨育.量子力学导论[M].北京:北京大学出版社,1992年10月..

共引文献11

同被引文献28

  • 1周国中.非球谐振子势Schrdinger方程的解析解[J].安徽师范大学学报(自然科学版),2005,28(1):48-51. 被引量:4
  • 2郑斌.2+1维非线性Schrdinger方程的显式解[J].重庆师范大学学报(自然科学版),2006,23(2):23-25. 被引量:7
  • 3柏琰,张鲁明.对称正则长波方程的一个守恒差分格式[J].应用数学学报,2007,30(2):248-255. 被引量:48
  • 4Rosenau P.Dynamics of dense discrete systems[J].Progr Theoret Phys,1988,79:1028-1042.
  • 5Liu L,Mei M,Wong Y S.Asymptotic behavior of solutions to the Rosenau-Burgers equation with a periodic initial boundary[J].Nonlinear Anal:TMA,2007,67:2527-2539.
  • 6Liu L,Mei M.A better asymptotic profile of Rosenau-Burgers equation[J].Appl Math Comput,2002,131:147-170.
  • 7Mei M.Long-time behavior of solution for Rosenau-Burgers equation (Ⅰ)[J].Appl Anal,1996,63:315-330.
  • 8Mei M.Long-time behavior of solution for Rosenau-Burgers equation (Ⅱ)[J].Appl Anal,1998,68:333-356.
  • 9Hu B,Xu Y,Hu J.Crank-Nicolson difference scheme for the Rosenau-Burgers equation[J].Appl Math Comput,2005,204:311-316.
  • 10Saito H,Ueda M.Intermittent implosion and pattern formation of trapped Bose-Einstein condensates with an attractive interaction[J].Phys Rev Lett,2001,86(4):1406-1409.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部