期刊文献+

分数Maxwell模型应用于PTFE松弛模量的研究 被引量:10

Relaxation Modulus of PTFE Studied by Fractional Maxwell Model
下载PDF
导出
摘要 用分数M axwell模型对聚合物PTFE(Polytetrafluoethylene)的应力松弛过程进行了研究.分数M axwell模型的渐近行为是确定其参数的基本依据,但根据实验数据确定的松弛时间与渐近解成立的条件并不自恰.通过适当选定松弛时间,利用起始时段的实验数据确定初始松弛指数和松弛模量,并适当优化末端松弛指数,分数M axwell模型可以对粘弹性应力松弛过程给出非常好的描述. The stress relaxation modulus of PTFE (polytetrafluorethylene) was studied by using fractional Maxwell model. The asymptotic solutions of fractional Maxwell model were assumed to be the starting point to decide the parameters(β, α, T E) , but the relaxation time T fitted by experimental data is in contradiction with the conditions of the asymptotic solutions. The principles for choosing the parameters were discussed. The relaxation exponent β and α ( the order of the fractional derivatives) can be decided according to the relaxation behavior of the initial and terminal time respectively. Choosing the relaxation time T properly, the modulus E can be determined by using the experimental data of the initial time. By optimizing the parameters T and α, the fractional Maxwell model can describe viscoelastic relaxation process very well. The relative error of the relaxation modulus of PTFE fitted by fractional Maxwell model is 0.64%.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2006年第11期2160-2163,共4页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:10347007) 甘肃省高分子材料重点实验室开放课题(批准号:KF-04-02)资助
关键词 PTFE 粘弹性 应力松弛模量 分数Maxwell模型 PTFE Viscoelasticity Stress relaxation modulus Fractional Maxwell model
  • 相关文献

参考文献13

  • 1Aklonis J. J, MacKnight W. J.. Introduction to Polymer Viscoelasticity, 2nd Ed. [ M ], New York: John Wiley and Sons, 1983
  • 2Ward I. M.. Mechanical Properties of Solid Polymer[ M ], 1971, Chichester: Wiley
  • 3徐晓明,林永生,吴章锋,韩国彬.季铵盐Gemini表面活性剂胶团水溶液的流变性质[J].高等学校化学学报,2004,25(7):1334-1337. 被引量:2
  • 4Koller R. C.. J. Appl. Mech. [J], 1984, 51:299-307
  • 5Glochle W. G, Nonnenmacher T. F.. Macromolecules[J], 1991, 24:6426-6434
  • 6Friedrich C, Braun H.. Rheol Acta[J] , 1991 , 30:151-158
  • 7Schiessel H, Metzler R, Blumen A. et al.. J. Phys. A[J], 1995, 28:6567-6584 J
  • 8徐明瑜,谭文长.黏弹性材料本构方程的广义分数阶单元网络表述及其广义解[J].中国科学(A辑),2002,32(8):673-681. 被引量:10
  • 9Hemandez-Jimenez A, Hemandez-santiago J, Maeias-carcia A.. Polymer Testing[ J], 2002, 21:325-331
  • 10Oldham K. B, Spanier J.. The Fractional Calculus[M], New York: Academic, 1974

二级参考文献28

  • 1Glockle W G, Nonenmacher T F. Fractional integral operators and fox functions in the theory of viscoelastisity. Macromolecules, 1991, 24: 6426~6434
  • 2Friedrich C. Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheol Acta, 1991,30: 151~158
  • 3Nonnemacher T F, Metzler R. On the Riemann-Liouville fractional calculus and some recent applications. Fractals, 1995,3(3): 557~566
  • 4Schiessel H, Metzler R, Nonenmacher T F. Generalized viscoelastic models:their fractional equations with solutions. J Phys A: Math Gen, 1995, 28: 6567~6584
  • 5Friedrich C, Schiessel H, Blumen A. Constitutive behavior modeling and fractional derivatives. In: Sihiner D A, Kee D D, Chhabra R P, eds. Advances in the flow and rheology of non-Newtonian fluids. New York: Elsevier, 1999, 427~466
  • 6Schiessel H, Friedrich C, Blumen A. Applications to problems in polymer physics and rheology. In: Hilfer R, ed. Applications of fractional calculus in Physics. Singapore: World Scientific, 2000, 331~376
  • 7Heymans N. Modelling non-linear and time-dependent behaviour of viscoelastic materials using hierarchical models. In: Emri I, ed. Progress and trends in rheology V: proceedings of the fifth European rheology conference. Darmstade Steinkopff: Springer, 1998, 100~101
  • 8Schiessel H, Blumen A. Mesoscopic pictures of the sol-gel transition: ladder models and fractal networks. Macromolecules. 1995, 28(11): 4013~4019.
  • 9Mainardi F, Gorenflo R. On Mittag Leffler-Type function in fractional evolution processes. J Comput Appl Math, 2000, 118(2): 283~299
  • 10Nonnenmacher T F. Fractional relaxation equations for viscoelasticity and related phenomena. In: Vasguez J C, Jon D, eds. Rheological modeling Thermodynamical and statistical approaches. Berlin: Springer, 1991, 309~320

共引文献10

同被引文献151

引证文献10

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部