期刊文献+

无定河区域1981-2001年植被生产力和水量平衡对气候变化的响应 被引量:9

Responses of Gross Primary Productivity and Water Balance Components in Wuding River Region,the Eastern Part of the Loess Plateau from 1981 to 2001
下载PDF
导出
摘要 基于土壤-植被-大气系统过程模型(VIP模型)和NOAA-AVHRR遥感信息,模拟了1981~2001年黄土高原无定河区域(36-40°N,108-111°E)植被总第一性生产力(GPP)和水量平衡的时空变化特征及其对气候变化的响应。结果表明:该研究区域1981-2001年间气候有明显变暖趋势,斜率为0.08℃·a^-1降水量下降,斜率为-3.2mm·a^-1. GPP年总量1998年前呈上升趋势,之后呈下降趋势,平均值为289g·m^-2·a^-1(C),最大值和最小值分别为377g·m^-2·a^-1。(C)(1994年)和143g·m^-2·a^-1。(C)(2001年)。年降水量、蒸散量和径流量随时间都呈下降趋势,且其空间分布有明显的由南向北梯度递减特征。 Based on the Soil-Vegetation-Atmosphere Transfer model (VIP model) and the NOAA-AVHRR remote sensing data, the temporal and spatial characteristics of the gross primary productivity (GPP) and water balance budget in the Wuding River region, the eastern part of Loess Plateau, were simulated to explore their responses to the climate and land use/cover change. The resuhs show that the climate warming was significant with a rate of 0.08℃·a^-1 , and annual precipitation amount decreased with a rate of 3.2 mm · a^-1 from 1981 to 2001. The trend of annual GPP increased before 1998 and decreased after 1998, with a mean value of 291 g · m^-2 · a^-1 (C) and the maximum and the minimum 377 g · m^-2 · a^-1 (C) (1994) and 143 g · m^-2 a^-1 (C) (2001), respectively. The annual values of precipitation and evapotranspiration show a decreasing trend in this period. On the spatial pattern, GPP and evapotranspiration have similar patterns with precipitation, namely decreasing from south to north. It is concluded that the responses of GPP and water balance in Wuding River region were significant incurred by global change from 1981 to 2001.
出处 《气候与环境研究》 CSCD 北大核心 2006年第4期477-486,共10页 Climatic and Environmental Research
基金 国家自然科学基金资助项目90211007 国家重点基础研究发展规划项目2002CB412503 中国科学院地理科学与资源所创新项目CXIOG-A04-12
关键词 总第一性生产力 水量平衡 气候变化 VIP模型 Gross primary productivity, water balance, climate change, VIP model
  • 相关文献

参考文献18

  • 1Parton W J, Scurlock J M O, Ojima D S, et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 1993, 7 : 785-809
  • 2Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production. Nature, 1993, 363 : 234-240
  • 3Running S W, Coughlan J C. A general model of the forest ecosystem processes for regional applications Ⅰ: hydrological balance, canopy gas exchange and primary production processes. Ecology Modelling, 1988, 42 : 125-154
  • 4Running S W, Gower S T. FOREST BGC. A general model of forest ecosystem processes for regional applications Ⅱ.Dynamic carbon allocation and nitrogen budgets. Tree Physiology, 1991, 9:147-160
  • 5Liu J, Chen J M, Cihlar J, et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment, 1997, 62: 158-175
  • 6Cao M K, Woodwrad F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems andtheir responses to climate change. Global Change Biology,1998, 4:185-198
  • 7Nemani R R, Keeling C D, Hashimoto H, et al. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science, 2003, 300 (5625): 1560-1563
  • 8周才平,欧阳华,王勤学,渡边正孝,孙青强.青藏高原主要生态系统净初级生产力的估算[J].地理学报,2004,59(1):74-79. 被引量:80
  • 9Tian H, Melillo J M, Kicklighter DW, et al. Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Global and Planetary Change, 2003,37 , 201-217
  • 10Cao M K, Tao B, Li K R, et al. Interannual variation in terrestrial ecosystem carbon flux in China from 1981 to 1998. Acta Botanica Sinica, 2003, 45 (5): 552-560

二级参考文献40

  • 1李秀彬.全球环境变化研究的核心领域──土地利用/土地覆被变化的国际研究动向[J].地理学报,1996,51(6):553-558. 被引量:1714
  • 2[1]Printice I C. The carbon cycle and atmospheric carbon dioxide in climate changes 2001: The Scientific Basic (IPCC). Cambridge: Cambridge University Press, 2001. 184~237
  • 3[2]Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408: 184~187
  • 4[3]Houghton R A, Hackler J L, Lawrence K T. The U. S. carbon budget: Contributions from land-use change. Science, 1999, 285: 574~578
  • 5[4]Houghton R A, Skole D L, Nobre C A, et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature, 2000, 403: 301~304
  • 6[5]Caspersen J P, Pacala S W, Jenkins J C, et al. Contributions of land-use history to carbon accumulation in U. S. forests. Science, 2000, 290: 1148~1151
  • 7[6]Defries R S. Past and future sensitivity of primary production to human modification of landscape. Geophysical Research Letters, 2002, 29(7): 361~364
  • 8[7]Defries R S, Bounoua L, Collatz G J. Human modification of the landscape and surface climate in the next fifty years. Global Change Biology, 2002, 8: 438~458
  • 9[8]Defries R S, Houghton R A, Hansen M C, et al. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Global Change Biology, 2003, 99(22): 14256~14261
  • 10[9]Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414: 169~172

共引文献239

同被引文献183

引证文献9

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部