摘要
To the Editor: Bird flu or avian flu, caused by H5N1 virus, is a new emerging infectious disease. It is noted that this H5N1 virus jumped the species barrier and caused severe disease with high mortality in humans in many countries. The continued westward dissemination of H5N1 influenza A viruses in avian populations and the nearly 50% mortality of humans infected with H5N1 are a source of great international concern.1 Providing sufficient antiviral drugs and development and approval of new vaccines are the keys for control of the possible emerging pandemic of this atypical influenza.1'2 Based on the advance in bioinformatics, the immunomics becomes a new alternative in vaccine development.3 Advanced technologies for vaccine development, such as genome sequence analysis, microarray, proteomics approach, high-throughput cloning, bioinformatics database tools and computational vaccinology can be applied for vaccine development of several diseases including new emerging diseases.
To the Editor: Bird flu or avian flu, caused by H5N1 virus, is a new emerging infectious disease. It is noted that this H5N1 virus jumped the species barrier and caused severe disease with high mortality in humans in many countries. The continued westward dissemination of H5N1 influenza A viruses in avian populations and the nearly 50% mortality of humans infected with H5N1 are a source of great international concern.1 Providing sufficient antiviral drugs and development and approval of new vaccines are the keys for control of the possible emerging pandemic of this atypical influenza.1'2 Based on the advance in bioinformatics, the immunomics becomes a new alternative in vaccine development.3 Advanced technologies for vaccine development, such as genome sequence analysis, microarray, proteomics approach, high-throughput cloning, bioinformatics database tools and computational vaccinology can be applied for vaccine development of several diseases including new emerging diseases.