摘要
针对某些语音LPC(L inear Pred iction Cod ing)分析的缺陷提出一种改进算法。该算法重点研究经典LPC分析后基音激励方向向下的语音,对这种浊音LPC残差进行后滤波以取代预增强的方法使其逼近语音激励。该算法将传统LPC分析中的声道模型和声门模型分开考虑,既避免了引入ARMA模型难以计算的缺陷,同时又显著的抵消了声门模型中极点的影响。实验表明,该算法对经典LPC分析后基音激励方向反向的语音,改善效果明显,残差的方向性与理论分析更加吻合。最后将该方案应用于语音水印的研究中,具有一定实用性。
This paper proposes a novel algorithm to overcome the disadvantage of LPC ( Linear Prediction Coding). Firstly we analyze the speech with reversed polarity and present the idea of post-filtering of the LPC residual of these voiced speech frames. The proposed algorithm reduces computational complexity of ARMA ( Autoregressive Moving Average) model and the effect of pole-points in glottis model. Experimental results show that this new algorithm obviously improves the performance of LPC. Finally, we describe the usage of this method in audio information hiding.
出处
《南京邮电大学学报(自然科学版)》
2006年第5期22-26,共5页
Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金
江苏省自然科学基金(BK2004150)资助项目
关键词
语音信号处理
LPC残差
一阶滤波
信息隐藏
Speech Signal Processing
LPC residual
First-order Filtering
Information Hiding